脂质代谢
癌症研究
肿瘤微环境
免疫系统
PI3K/AKT/mTOR通路
脂肪酸合酶
免疫疗法
医学
生物
药理学
信号转导
免疫学
内科学
细胞生物学
作者
NULL AUTHOR_ID,NULL AUTHOR_ID,NULL AUTHOR_ID,NULL AUTHOR_ID,NULL AUTHOR_ID,Yongsheng Li
标识
DOI:10.1136/jitc-2024-008811
摘要
Background While anti-programmed cell death protein-1 (PD-1) monotherapy has shown effectiveness in treating lung cancer, its response rate is limited to approximately 20%. Recent research suggests that abnormal lipid metabolism in patients with lung adenocarcinoma may hinder the efficacy of anti-PD-1 monotherapy. Methods Here, we delved into the patterns of lipid metabolism in patients with The Cancer Genome Atlas (TCGA)-lung adenocarcinoma (LUAD) and their correlation with the immune microenvironment’s cellular infiltration characteristics of the tumor. Furthermore, the lipid metabolism score (LMS) system was constructed, and based on the LMS system, we further performed screening for potential agents targeting lipid metabolism. The mechanism of MK1775 was further validated using RNA sequencing, co-culture technology, and in vivo experiments. Results We developed an LSM system and identified a potential sensitizing agent, MK1775, which targets lipid metabolism and enhances the effects of anti-PD-1 treatment. Our results demonstrate that MK1775 inhibits tumor progression by influencing lipid crosstalk between tumor cells and tumor-associated macrophages and CD8 + T cells, thereby increasing the effectiveness of anti-PD-1 treatment. Further, we found that MK1775 inhibited the phosphatidylinositol 3-kinase(PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway, which on one hand downregulated FASN-mediated synthesis of fatty acids (FAs) to inhibit fatty acid oxidation of tumor-associated macrophages, and on the other hand, promoted IRF-mediated secretion of CXCL10 and CXCL11 to facilitate the infiltration of CD8 + T cells. Conclusions These findings emphasize the important role of lipid metabolism in shaping the complex tumor microenvironment. By manipulating the intricate intricacies of lipid metabolism within the tumor microenvironment, we can uncover and develop promising strategies to sensitize immunotherapy, potentially revolutionizing cancer treatment approaches.
科研通智能强力驱动
Strongly Powered by AbleSci AI