Effectiveness of a Digital Health Intervention Leveraging Reinforcement Learning to Increase Daily Steps Among Adults with Diabetes and Depression: Results from the DIAMANTE Randomized Clinical trial (Preprint)

预印本 萧条(经济学) 随机对照试验 干预(咨询) 数字健康 心理学 老年学 医学 临床心理学 精神科 医疗保健 计算机科学 万维网 经济 宏观经济学 经济增长 外科
作者
Adrián Aguilera,Marvyn R. Arévalo Avalos,Jing Xu,Bibhas Chakraborty,Caroline A. Figueroa,Faviola Garcia,Karina Rosales,Rosa Hernandez-Ramos,Chris Karr,Joseph Jay Williams,Lisa Ochoa‐Frongia,Urmimala Sarkar,Elad Yom‐Tov,Courtney R. Lyles
出处
期刊:Journal of Medical Internet Research 卷期号:26: e60834-e60834 被引量:1
标识
DOI:10.2196/60834
摘要

Background Digital and mobile health interventions using personalization via reinforcement learning algorithms have the potential to reach large number of people to support physical activity and help manage diabetes and depression in daily life. Objective The Diabetes and Mental Health Adaptive Notification and Tracking Evaluation (DIAMANTE) study tested whether a digital physical activity intervention using personalized text messaging via reinforcement learning algorithms could increase step counts in a diverse, multilingual sample of people with diabetes and depression symptoms. Methods From January 2020 to June 2022, participants were recruited from 4 San Francisco, California–based public primary care clinics and through web-based platforms to participate in the 24-week randomized controlled trial. Eligibility criteria included English or Spanish language preference and a documented diagnosis of diabetes and elevated depression symptoms. The trial had 3 arms: a Control group receiving a weekly mood monitoring message, a Random messaging group receiving randomly selected feedback and motivational text messages daily, and an Adaptive messaging group receiving text messages selected by a reinforcement learning algorithm daily. Randomization was performed with a 1:1:1 allocation. The primary outcome, changes in daily step counts, was passively collected via a mobile app. The primary analysis assessed changes in daily step count using a linear mixed-effects model. An a priori subanalysis compared the primary step count outcome within recruitment samples. Results In total, 168 participants were analyzed, including those with 24% (40/168) Spanish language preference and 37.5% (63/168) from clinic-based recruitment. The results of the linear mixed-effects model indicated that participants in the Adaptive arm cumulatively gained an average of 3.6 steps each day (95% CI 2.45-4.78; P<.001) over the 24-week intervention (average of 608 total steps), whereas both the Control and Random arm participants had significantly decreased rates of change. Postintervention estimates suggest that participants in the Adaptive messaging arm showed a significant step count increase of 19% (606/3197; P<.001), in contrast to 1.6% (59/3698) and 3.9% (136/3480) step count increase in the Random and Control arms, respectively. Intervention effectiveness differences were observed between participants recruited from the San Francisco clinics and those recruited via web-based platforms, with the significant step count trend persisting across both samples for participants in the Adaptive group. Conclusions Our study supports the use of reinforcement learning algorithms for personalizing text messaging interventions to increase physical activity in a diverse sample of people with diabetes and depression. It is the first to test this approach in a large, diverse, and multilingual sample. Trial Registration ClinicalTrials.gov NCT03490253; https://clinicaltrials.gov/study/NCT03490253 International Registered Report Identifier (IRRID) RR2-10.1136/bmjopen-2019-034723
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
restudy68完成签到,获得积分10
1秒前
1秒前
脑洞疼应助cheese采纳,获得10
2秒前
ceiling完成签到,获得积分10
2秒前
完美世界应助墨尘采纳,获得50
2秒前
Mimi发布了新的文献求助10
3秒前
马鑫麟完成签到,获得积分10
3秒前
Young完成签到,获得积分10
3秒前
木木完成签到 ,获得积分10
3秒前
端庄的白开水完成签到,获得积分10
3秒前
所所应助过客采纳,获得10
3秒前
芯止谭轩完成签到,获得积分10
3秒前
4秒前
4秒前
冷漠的布丁完成签到,获得积分10
4秒前
深秋大晌午完成签到 ,获得积分10
4秒前
小蘑菇应助SDNUDRUG采纳,获得10
4秒前
青栞完成签到,获得积分10
5秒前
5秒前
粗心的智慧完成签到,获得积分10
5秒前
5秒前
さくま完成签到,获得积分10
6秒前
灵巧的靳完成签到 ,获得积分10
6秒前
马鑫麟发布了新的文献求助10
6秒前
6秒前
隐形的妙松完成签到,获得积分10
6秒前
bzc229完成签到,获得积分10
7秒前
麦冬冬完成签到,获得积分10
7秒前
SYLH应助zhengke924采纳,获得10
7秒前
7秒前
7秒前
same完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
Seven完成签到,获得积分10
9秒前
9秒前
orixero应助XinyiZhang采纳,获得10
9秒前
peng发布了新的文献求助10
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516743
求助须知:如何正确求助?哪些是违规求助? 3098937
关于积分的说明 9242286
捐赠科研通 2794238
什么是DOI,文献DOI怎么找? 1533348
邀请新用户注册赠送积分活动 712710
科研通“疑难数据库(出版商)”最低求助积分说明 707417