亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Partial Discharge Pattern Recognition Method Based on Transfer Learning and DenseNet Model

局部放电 计算机科学 波形 卷积神经网络 学习迁移 开关设备 人工智能 模式识别(心理学) 稳健性(进化) 规范化(社会学) 时域 特征提取 深度学习 人工神经网络 计算机视觉 工程类 电气工程 基因 社会学 机械工程 电信 生物化学 电压 化学 人类学 雷达
作者
Yuwei Fu,Liang Liejuan,Weihua Huang,Guobin Huang,Huang Peijun,Zhiyu Zhang,Chi Chen,Chuang Wang
出处
期刊:IEEE Transactions on Dielectrics and Electrical Insulation [Institute of Electrical and Electronics Engineers]
卷期号:30 (3): 1240-1246 被引量:46
标识
DOI:10.1109/tdei.2023.3239032
摘要

With the development of intelligent sensing technology, a large amount of partial discharge (PD) time-domain waveform images are generated in the on-site detection of gas-insulated switchgear (GIS) PD. Traditional pattern recognition methods are mostly aimed at structured data and cannot directly identify defect types of such data. At the same time, the deep learning method for GIS PD pattern recognition is generally faced with the problem of small samples. In order to solve the above problems, this article proposes a PD pattern recognition method based on transfer learning and DenseNet model. First, the time-domain waveform images are processed by image enhancement, normalization, image compression, and other image processing techniques. The finite-difference time-domain (FDTD) method was used to simulate GIS PD, and the time-domain waveform image database of four PD defects is established. Using convolutional neural network (CNN) and transfer learning, the recognition accuracy of the model is increased to 95%, with better robustness. The recognition performance of different CNN structures is studied. The results show that DenseNet model has higher accuracy than other structures and shorter training time. This study can be used to diagnose the insulation status of GIS equipment in-site.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
迷路千琴发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
9秒前
12秒前
tlx发布了新的文献求助10
16秒前
xmg完成签到,获得积分20
20秒前
共享精神应助一周采纳,获得10
20秒前
21秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
研友_VZG7GZ应助科研通管家采纳,获得10
23秒前
gexzygg应助科研通管家采纳,获得10
23秒前
shhoing应助科研通管家采纳,获得10
23秒前
23秒前
qpp完成签到,获得积分10
23秒前
beiwei完成签到 ,获得积分10
25秒前
25秒前
葡萄发布了新的文献求助10
29秒前
34秒前
情怀应助tlx采纳,获得30
37秒前
小蘑菇应助Qiaoguliang采纳,获得10
37秒前
37秒前
42秒前
葡萄完成签到,获得积分10
43秒前
bgim发布了新的文献求助10
46秒前
53秒前
55秒前
55秒前
一周发布了新的文献求助10
58秒前
58秒前
Qiaoguliang发布了新的文献求助10
59秒前
1分钟前
lyb1853关注了科研通微信公众号
1分钟前
波恰发布了新的文献求助10
1分钟前
飞快的孱发布了新的文献求助10
1分钟前
1分钟前
三三完成签到 ,获得积分0
1分钟前
1分钟前
horizon发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549098
求助须知:如何正确求助?哪些是违规求助? 4634430
关于积分的说明 14634667
捐赠科研通 4575878
什么是DOI,文献DOI怎么找? 2509325
邀请新用户注册赠送积分活动 1485283
关于科研通互助平台的介绍 1456402