Large-scale prediction of stream water quality using an interpretable deep learning approach

水质 随机森林 质量(理念) 土地覆盖 比例(比率) 土地利用 预测建模 人口 环境科学 统计 水文学(农业) 机器学习 数学 计算机科学 地理 地图学 生态学 工程类 岩土工程 人口学 社会学 哲学 认识论 生物
作者
Hang Zheng,Yueyi Liu,Wenhua Wan,Jianshi Zhao,Guanti Xie
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:331: 117309-117309 被引量:15
标识
DOI:10.1016/j.jenvman.2023.117309
摘要

Deep learning methods, which have strong capabilities for mapping highly nonlinear relationships with acceptable calculation speed, have been increasingly applied for water quality prediction in recent studies. However, it is argued that the practicality of deep learning methods is limited due to the lack of physical mechanics to explain the prediction results of water quality changes. A knowledge gap exists in rationalizing the deep learning results for water quality predictions. To address this gap, an interpretable deep learning framework was established to predict the spatiotemporal variations of water quality parameters in a large spatial region. Mereological, land-use, and socioeconomic variables were adopted to predict the daily variations of stream water quality parameters across 138 sub-catchments in a total of over 575,250 km2 in southern China. The coefficients of determination of chemical oxygen demand (COD), total phosphorus (TP), and total nitrogen (TN) predictions were over 0.80, suggesting a satisfactory prediction performance. The model performance in terms of prediction accuracy could be improved by involving land-use and socioeconomic predictors in addition to hydrological variables. The SHapley Additive exPlanations method used in this study was demonstrated to be effective for interpreting the prediction results by identifying the significant variables and reasoning their influencing directions on the variation of each water quality parameter. The air temperature, proportion of forest area, grain production, population density, and proportion of urban area in each sub-catchment as well as the accumulated rainfall within the previous 3 days were identified as the most significant variables affecting the variations of dissolved oxygen, COD, ammoniacal nitrogen(NH3–N), TN, TP, and turbidity in the stream water in the case area, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苗条的嘉熙完成签到 ,获得积分10
刚刚
犹豫麦片完成签到,获得积分10
1秒前
郝宝真发布了新的文献求助10
2秒前
wangjing应助快乐美女采纳,获得10
3秒前
Andy完成签到,获得积分10
5秒前
微微又潇潇完成签到,获得积分10
5秒前
wangjing应助董小董采纳,获得10
6秒前
务实的紫伊完成签到,获得积分10
7秒前
喜羊羊完成签到,获得积分10
7秒前
8秒前
古今奇观完成签到 ,获得积分10
10秒前
清爽代双完成签到,获得积分10
12秒前
科研修沟发布了新的文献求助10
13秒前
NanXin完成签到,获得积分10
13秒前
仁爱的伯云完成签到,获得积分10
15秒前
ste56完成签到,获得积分10
18秒前
18秒前
完美的凝蝶完成签到 ,获得积分10
19秒前
carlitos完成签到 ,获得积分10
20秒前
12369发布了新的文献求助10
22秒前
司纤户羽发布了新的文献求助10
22秒前
float完成签到 ,获得积分10
25秒前
赘婿应助对对对采纳,获得10
33秒前
科研通AI2S应助魔幻蓉采纳,获得10
34秒前
yydump驳回了iNk应助
35秒前
41秒前
田様应助Vince采纳,获得10
41秒前
科研不掉头发完成签到,获得积分10
42秒前
12369完成签到,获得积分10
42秒前
Cat应助南兮采纳,获得10
45秒前
46秒前
小二郎应助dates2008采纳,获得10
47秒前
科研通AI2S应助lxl采纳,获得10
47秒前
李健的小迷弟应助小唐采纳,获得10
47秒前
47秒前
司纤户羽完成签到,获得积分10
49秒前
50秒前
無羁发布了新的文献求助10
52秒前
想游泳的鹰完成签到,获得积分10
54秒前
Vince发布了新的文献求助10
54秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera, Volume 3, Part 2 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165538
求助须知:如何正确求助?哪些是违规求助? 2816691
关于积分的说明 7913299
捐赠科研通 2476143
什么是DOI,文献DOI怎么找? 1318707
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388