Large-scale prediction of stream water quality using an interpretable deep learning approach

水质 质量(理念) 比例(比率) 环境科学 人工智能 水文学(农业) 机器学习 计算机科学 地理 地质学 地图学 生态学 哲学 认识论 岩土工程 生物
作者
Hang Zheng,Yueyi Liu,Wenhua Wan,Jianshi Zhao,Guanti Xie
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:331: 117309-117309 被引量:20
标识
DOI:10.1016/j.jenvman.2023.117309
摘要

Deep learning methods, which have strong capabilities for mapping highly nonlinear relationships with acceptable calculation speed, have been increasingly applied for water quality prediction in recent studies. However, it is argued that the practicality of deep learning methods is limited due to the lack of physical mechanics to explain the prediction results of water quality changes. A knowledge gap exists in rationalizing the deep learning results for water quality predictions. To address this gap, an interpretable deep learning framework was established to predict the spatiotemporal variations of water quality parameters in a large spatial region. Mereological, land-use, and socioeconomic variables were adopted to predict the daily variations of stream water quality parameters across 138 sub-catchments in a total of over 575,250 km2 in southern China. The coefficients of determination of chemical oxygen demand (COD), total phosphorus (TP), and total nitrogen (TN) predictions were over 0.80, suggesting a satisfactory prediction performance. The model performance in terms of prediction accuracy could be improved by involving land-use and socioeconomic predictors in addition to hydrological variables. The SHapley Additive exPlanations method used in this study was demonstrated to be effective for interpreting the prediction results by identifying the significant variables and reasoning their influencing directions on the variation of each water quality parameter. The air temperature, proportion of forest area, grain production, population density, and proportion of urban area in each sub-catchment as well as the accumulated rainfall within the previous 3 days were identified as the most significant variables affecting the variations of dissolved oxygen, COD, ammoniacal nitrogen(NH3–N), TN, TP, and turbidity in the stream water in the case area, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
自由的过客完成签到,获得积分10
1秒前
转角一起走完成签到,获得积分20
1秒前
22完成签到,获得积分10
1秒前
1秒前
Zn应助伊丽莎白打工采纳,获得10
2秒前
江月渡完成签到,获得积分10
3秒前
研友_RLN0vZ发布了新的文献求助10
3秒前
虾仁发布了新的文献求助10
3秒前
mmx发布了新的文献求助10
3秒前
4秒前
ff发布了新的文献求助10
5秒前
图南完成签到,获得积分20
5秒前
zhl发布了新的文献求助10
5秒前
今后应助喜洋洋采纳,获得10
6秒前
赘婿应助yin采纳,获得10
6秒前
7秒前
7秒前
8秒前
邢夏之发布了新的文献求助10
8秒前
8秒前
欣喜书桃完成签到,获得积分10
9秒前
9秒前
陈木木完成签到,获得积分10
9秒前
刘旭阳发布了新的文献求助10
9秒前
9秒前
hhhhhhh发布了新的文献求助10
9秒前
长情洙完成签到,获得积分10
10秒前
Lilac完成签到 ,获得积分10
10秒前
10秒前
10秒前
MissXia完成签到,获得积分10
10秒前
NUNKI完成签到,获得积分10
10秒前
迅速星星完成签到,获得积分10
10秒前
科研废物发布了新的文献求助10
11秒前
ltc完成签到,获得积分10
11秒前
科研通AI5应助诚c采纳,获得10
11秒前
Mrrr发布了新的文献求助10
11秒前
sganthem完成签到,获得积分10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759