已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Large-scale prediction of stream water quality using an interpretable deep learning approach

水质 质量(理念) 比例(比率) 环境科学 人工智能 水文学(农业) 机器学习 计算机科学 地理 地质学 地图学 生态学 哲学 认识论 岩土工程 生物
作者
Hang Zheng,Yueyi Liu,Wenhua Wan,Jianshi Zhao,Guanti Xie
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:331: 117309-117309 被引量:33
标识
DOI:10.1016/j.jenvman.2023.117309
摘要

Deep learning methods, which have strong capabilities for mapping highly nonlinear relationships with acceptable calculation speed, have been increasingly applied for water quality prediction in recent studies. However, it is argued that the practicality of deep learning methods is limited due to the lack of physical mechanics to explain the prediction results of water quality changes. A knowledge gap exists in rationalizing the deep learning results for water quality predictions. To address this gap, an interpretable deep learning framework was established to predict the spatiotemporal variations of water quality parameters in a large spatial region. Mereological, land-use, and socioeconomic variables were adopted to predict the daily variations of stream water quality parameters across 138 sub-catchments in a total of over 575,250 km2 in southern China. The coefficients of determination of chemical oxygen demand (COD), total phosphorus (TP), and total nitrogen (TN) predictions were over 0.80, suggesting a satisfactory prediction performance. The model performance in terms of prediction accuracy could be improved by involving land-use and socioeconomic predictors in addition to hydrological variables. The SHapley Additive exPlanations method used in this study was demonstrated to be effective for interpreting the prediction results by identifying the significant variables and reasoning their influencing directions on the variation of each water quality parameter. The air temperature, proportion of forest area, grain production, population density, and proportion of urban area in each sub-catchment as well as the accumulated rainfall within the previous 3 days were identified as the most significant variables affecting the variations of dissolved oxygen, COD, ammoniacal nitrogen(NH3–N), TN, TP, and turbidity in the stream water in the case area, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
六六完成签到 ,获得积分10
刚刚
谦让溪流发布了新的文献求助10
1秒前
1秒前
香蕉觅云应助仲夏夜之梦采纳,获得10
2秒前
2秒前
镜哥完成签到,获得积分10
2秒前
manon完成签到 ,获得积分10
4秒前
Davidjin发布了新的文献求助30
5秒前
在水一方应助靖旎采纳,获得10
5秒前
旷意发布了新的文献求助10
5秒前
小李完成签到 ,获得积分10
6秒前
7秒前
QAQ完成签到 ,获得积分10
7秒前
伶俐的谷丝完成签到 ,获得积分10
8秒前
9秒前
srx完成签到 ,获得积分10
10秒前
12秒前
12秒前
dddddd发布了新的文献求助10
14秒前
fredericev发布了新的文献求助10
15秒前
谦让溪流完成签到,获得积分10
15秒前
16秒前
小太阳完成签到,获得积分10
16秒前
微课发布了新的文献求助10
17秒前
哈登完成签到 ,获得积分10
18秒前
执着的似狮完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
21秒前
sunsold完成签到,获得积分10
22秒前
柚C美式完成签到 ,获得积分10
24秒前
eclo完成签到 ,获得积分10
24秒前
今后应助安静的瑾瑜采纳,获得10
28秒前
wenbo完成签到,获得积分10
33秒前
fredericev完成签到,获得积分20
34秒前
小蘑菇应助miaomiao采纳,获得10
34秒前
38秒前
linn完成签到,获得积分10
39秒前
40秒前
40秒前
古德猫宁完成签到,获得积分10
41秒前
43秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705395
求助须知:如何正确求助?哪些是违规求助? 5163352
关于积分的说明 15245053
捐赠科研通 4859251
什么是DOI,文献DOI怎么找? 2607656
邀请新用户注册赠送积分活动 1558822
关于科研通互助平台的介绍 1516347