亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Directional lane change prediction using machine learning methods

决策树 人工智能 朴素贝叶斯分类器 支持向量机 计算机科学 逻辑回归 机器学习 线性判别分析 集成学习 变更检测 领域(数学) 树(集合论) 随机森林 回归 模式识别(心理学) 统计 数学 数学分析 纯数学
作者
Mostafa K. Ardakani,Timothy M. Bonds
出处
期刊:Istraživanja i projektovanja za privredu [Centre for Evaluation in Education and Science]
卷期号:21 (2): 346-352
标识
DOI:10.5937/jaes0-40553
摘要

This research employs a series of machine learning methods to predict the direction of lane change. The response is a binary variable indicating changing the lane to the left or to the right. The employed methods include Decision Tree, Discriminant Analysis, Naïve Bayes, Support Vector Machine, k-Nearest Neighbor and Ensemble. The results are compared to the conventional logistic regression method. Both performance criteria and computational times are reported for comparison purposes. A design of experiments is run to test 25 classification methods at ratios of 25%, 50%, and 75% right to left lane change data. Moreover, samples are validated by cross and holdback validation methods. RUS Boosted trees, an ensemble method, shows improvement over logistic regression. This research provides valuable insights on lane change behaviour, including trajectories and driving styles, which falls into the field of microscopic lane change study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luole关注了科研通微信公众号
1秒前
简单发布了新的文献求助10
14秒前
16秒前
量子星尘发布了新的文献求助10
23秒前
共享精神应助浪里白条采纳,获得10
34秒前
41秒前
浪里白条发布了新的文献求助10
47秒前
JOKER完成签到 ,获得积分10
52秒前
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
cherish完成签到,获得积分10
1分钟前
1分钟前
风中沛柔完成签到,获得积分10
1分钟前
1分钟前
SSY发布了新的文献求助10
1分钟前
1分钟前
1分钟前
小马甲应助猫duoduo采纳,获得10
1分钟前
1分钟前
moyu123发布了新的文献求助10
2分钟前
俊逸的灵雁应助简单采纳,获得10
2分钟前
vber完成签到 ,获得积分10
2分钟前
乐乐应助moyu123采纳,获得10
2分钟前
俊逸的灵雁应助简单采纳,获得10
2分钟前
2分钟前
猫duoduo发布了新的文献求助10
2分钟前
绍华发布了新的文献求助10
2分钟前
bkagyin应助kcl采纳,获得10
2分钟前
半城烟火发布了新的文献求助10
2分钟前
Wcy发布了新的文献求助10
2分钟前
2分钟前
3分钟前
wanci应助科研通管家采纳,获得10
3分钟前
酷波er应助科研通管家采纳,获得10
3分钟前
CipherSage应助科研通管家采纳,获得10
3分钟前
迷你的水香完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723656
求助须知:如何正确求助?哪些是违规求助? 5279993
关于积分的说明 15299011
捐赠科研通 4872033
什么是DOI,文献DOI怎么找? 2616484
邀请新用户注册赠送积分活动 1566311
关于科研通互助平台的介绍 1523187