Super-resolution image reconstruction from sparsity regularization and deep residual-learned priors

先验概率 残余物 正规化(语言学) 超分辨率 人工智能 计算机科学 图像(数学) 迭代重建 模式识别(心理学) 计算机视觉 算法 数学 贝叶斯概率
作者
Xinyi Zhong,Ningning Liang,Ailong Cai,Xiaohuan Yu,Lei Li,Bin Yan
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:31 (2): 319-336 被引量:3
标识
DOI:10.3233/xst-221299
摘要

BACKGROUND: Computed tomography (CT) plays an important role in the field of non-destructive testing. However, conventional CT images often have blurred edge and unclear texture, which is not conducive to the follow-up medical diagnosis and industrial testing work. OBJECTIVE: This study aims to generate high-resolution CT images using a new CT super-resolution reconstruction method combining with the sparsity regularization and deep learning prior. METHODS: The new method reconstructs CT images through a reconstruction model incorporating image gradient L0-norm minimization and deep image priors using a plug-and-play super-resolution framework. The deep learning priors are learned from a deep residual network and then plugged into the proposed new framework, and alternating direction method of multipliers is utilized to optimize the iterative solution of the model. RESULTS: The simulation data analysis results show that the new method improves the signal-to-noise ratio (PSNR) by 7% and the modulation transfer function (MTF) curves show that the value of MTF50 increases by 0.02 factors compared with the result of deep plug-and-play super-resolution. Additionally, the real CT image data analysis results show that the new method improves the PSNR by 5.1% and MTF50 by 0.11 factors. CONCLUSION: Both simulation and real data experiments prove that the proposed new CT super-resolution method using deep learning priors can reconstruct CT images with lower noise and better detail recovery. This method is flexible, effective and extensive for low-resolution CT image super-resolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
坦率的松完成签到,获得积分10
刚刚
传奇3应助贤惠的正豪采纳,获得10
1秒前
111发布了新的文献求助10
1秒前
三寒鸦完成签到,获得积分10
1秒前
小木棉发布了新的文献求助10
1秒前
1秒前
少年郎完成签到,获得积分20
2秒前
CipherSage应助123lura采纳,获得10
2秒前
七七完成签到,获得积分10
2秒前
科研通AI2S应助小余采纳,获得10
2秒前
苹果骑士完成签到,获得积分10
2秒前
2秒前
shi hui应助jbhb采纳,获得10
3秒前
3秒前
3秒前
JUSTs0so发布了新的文献求助10
3秒前
长夜变清早完成签到,获得积分10
4秒前
5秒前
5秒前
otaro发布了新的文献求助10
6秒前
yinbin完成签到,获得积分10
6秒前
6秒前
独木舟发布了新的文献求助10
6秒前
白衣未央发布了新的文献求助10
6秒前
脑洞疼应助现实的曼荷采纳,获得10
8秒前
8秒前
轩辕德地发布了新的文献求助10
8秒前
三九完成签到,获得积分10
9秒前
orixero应助少年郎采纳,获得10
9秒前
三金发布了新的文献求助10
9秒前
kuku发布了新的文献求助10
9秒前
土豆你个西红柿完成签到 ,获得积分10
10秒前
小余完成签到,获得积分10
10秒前
11秒前
sherry完成签到 ,获得积分10
11秒前
搜集达人应助陈佳琪采纳,获得30
11秒前
xiaohan完成签到,获得积分10
11秒前
独木舟完成签到,获得积分10
11秒前
可爱的函函应助无辜洋葱采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762