Mapping the common gene networks that underlie related diseases

计算生物学 生物 遗传学 生物信息学 进化生物学
作者
Sara Brin Rosenthal,Sarah N. Wright,Sophie Liu,Christopher Churas,Daisy Chilin-Fuentes,Chi‐Hua Chen,Kathleen M. Fisch,Dexter Pratt,Jason F. Kreisberg,Trey Ideker
出处
期刊:Nature Protocols [Springer Nature]
卷期号:18 (6): 1745-1759 被引量:5
标识
DOI:10.1038/s41596-022-00797-1
摘要

A longstanding goal of biomedicine is to understand how alterations in molecular and cellular networks give rise to the spectrum of human diseases. For diseases with shared etiology, understanding the common causes allows for improved diagnosis of each disease, development of new therapies and more comprehensive identification of disease genes. Accordingly, this protocol describes how to evaluate the extent to which two diseases, each characterized by a set of mapped genes, are colocalized in a reference gene interaction network. This procedure uses network propagation to measure the network ‘distance’ between gene sets. For colocalized diseases, the network can be further analyzed to extract common gene communities at progressive granularities. In particular, we show how to: (1) obtain input gene sets and a reference gene interaction network; (2) identify common subnetworks of genes that encompass or are in close proximity to all gene sets; (3) use multiscale community detection to identify systems and pathways represented by each common subnetwork to generate a network colocalized systems map; (4) validate identified genes and systems using a mouse variant database; and (5) visualize and further investigate select genes, interactions and systems for relevance to phenotype(s) of interest. We demonstrate the utility of this approach by identifying shared biological mechanisms underlying autism and congenital heart disease. However, this protocol is general and can be applied to any gene sets attributed to diseases or other phenotypes with suspected joint association. A typical NetColoc run takes less than an hour. Software and documentation are available at https://github.com/ucsd-ccbb/NetColoc . This protocol describes how to use NetColoc, a freely available tool for evaluating the extent to which two related diseases, each characterized by a set of mapped genes, are colocalized in a reference gene interaction network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
223344完成签到,获得积分10
1秒前
欧阳半仙完成签到,获得积分10
1秒前
2秒前
bkagyin应助xm采纳,获得10
2秒前
赘婿应助gwh68964402gwh采纳,获得10
2秒前
我瞎蒙完成签到,获得积分10
3秒前
yzz发布了新的文献求助10
3秒前
赖道之发布了新的文献求助10
4秒前
熊猫完成签到,获得积分10
4秒前
Yvonne发布了新的文献求助10
5秒前
NANA发布了新的文献求助10
5秒前
yoyocici1505完成签到,获得积分10
5秒前
ding应助平常的擎宇采纳,获得30
6秒前
於松应助Chang采纳,获得20
6秒前
刻苦问柳完成签到,获得积分10
6秒前
呆萌小鸭子完成签到 ,获得积分10
6秒前
白白完成签到,获得积分10
6秒前
Lxy完成签到,获得积分10
6秒前
7秒前
橙子味完成签到 ,获得积分10
7秒前
8秒前
8秒前
dong完成签到,获得积分10
8秒前
9秒前
科研通AI5应助刘芸芸采纳,获得10
10秒前
baijiayi完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
song发布了新的文献求助10
11秒前
LEMON发布了新的文献求助10
12秒前
12秒前
Aha完成签到 ,获得积分10
12秒前
12秒前
乐乐应助狂野世立采纳,获得10
13秒前
yzz完成签到,获得积分10
13秒前
13秒前
SYLH应助曾水采纳,获得10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762