NTBiRW: A Novel Neighbor Model Based on Two-Tier Bi-Random Walk for Predicting Potential Disease-Related Microbes

相似性(几何) 计算机科学 随机游动 构造(python库) 疾病 交叉验证 人工智能 数据挖掘 特应性皮炎 机器学习 计算生物学 模式识别(心理学) 数学 统计 生物 医学 免疫学 病理 图像(数学) 程序设计语言
作者
Meng-Meng Yin,Ying-Lian Gao,Chun-Hou Zheng,Jin‐Xing Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (3): 1644-1653 被引量:5
标识
DOI:10.1109/jbhi.2022.3229473
摘要

Studies have revealed that microbes have an important effect on numerous physiological processes, and further research on the links between diseases and microbes is significant. Given that laboratory methods are expensive and not optimized, computational models are increasingly used for discovering disease-related microbes. Here, a new neighbor approach based on two-tier Bi-Random Walk is proposed for potential disease-related microbes, known as NTBiRW. In this method, the first step is to construct multiple microbe similarities and disease similarities. Then, three kinds of microbe/disease similarity are integrated through two-tier Bi-Random Walk to obtain the final integrated microbe/disease similarity network with different weights. Finally, Weighted K Nearest Known Neighbors (WKNKN) is used for prediction based on the final similarity network. In addition, leave-one-out cross-validation (LOOCV) and 5-fold cross-validation (5-fold CV) are applied for evaluating the performance of NTBiRW. Multiple evaluating indicators are taken to show the performance from multiple perspectives. And most of the evaluation index values of NTBiRW are better than those of the compared methods. Moreover, in case studies on atopic dermatitis and psoriasis, most of the first 10 candidates in the final result can be proven. This also demonstrates the capability of NTBiRW for discovering new associations. Therefore, this method can contribute to the discovery of disease-related microbes and thus offer new thoughts for further understanding the pathogenesis of diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Afffrain完成签到,获得积分10
刚刚
1秒前
2秒前
pyt777完成签到,获得积分10
4秒前
lf发布了新的文献求助10
4秒前
buzhinianjiu完成签到,获得积分10
4秒前
7秒前
tina3058发布了新的文献求助10
7秒前
callmefather发布了新的文献求助10
7秒前
思源应助rrrrrr采纳,获得10
8秒前
打打应助笨笨凡松采纳,获得10
8秒前
GXNU完成签到,获得积分10
8秒前
思源应助sby19采纳,获得10
9秒前
dlfg完成签到,获得积分10
9秒前
所所应助哒哒猪采纳,获得10
9秒前
支支完成签到,获得积分10
10秒前
陈富贵完成签到 ,获得积分10
11秒前
bkagyin应助zjk采纳,获得10
12秒前
13秒前
情怀应助joysa采纳,获得10
13秒前
SYLH应助Abi采纳,获得10
13秒前
15秒前
刘洋完成签到,获得积分10
16秒前
韶安萱发布了新的文献求助10
18秒前
18秒前
Metrix发布了新的文献求助10
18秒前
无花果应助Abi采纳,获得10
18秒前
18秒前
科研通AI5应助brazenness采纳,获得10
19秒前
20秒前
以默发布了新的文献求助10
20秒前
VDC应助经验丰富的菜狗采纳,获得30
20秒前
tmxx发布了新的文献求助10
21秒前
orixero应助DT采纳,获得10
21秒前
23秒前
小星云发布了新的文献求助10
23秒前
冷傲机器猫完成签到,获得积分10
23秒前
Marvin42完成签到,获得积分10
24秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565965
求助须知:如何正确求助?哪些是违规求助? 3138688
关于积分的说明 9428637
捐赠科研通 2839429
什么是DOI,文献DOI怎么找? 1560725
邀请新用户注册赠送积分活动 729866
科研通“疑难数据库(出版商)”最低求助积分说明 717679