NTBiRW: A Novel Neighbor Model Based on Two-Tier Bi-Random Walk for Predicting Potential Disease-Related Microbes

相似性(几何) 计算机科学 随机游动 构造(python库) 疾病 交叉验证 人工智能 数据挖掘 特应性皮炎 机器学习 计算生物学 模式识别(心理学) 数学 统计 生物 医学 免疫学 病理 图像(数学) 程序设计语言
作者
Meng-Meng Yin,Ying-Lian Gao,Chun-Hou Zheng,Jin‐Xing Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (3): 1644-1653 被引量:5
标识
DOI:10.1109/jbhi.2022.3229473
摘要

Studies have revealed that microbes have an important effect on numerous physiological processes, and further research on the links between diseases and microbes is significant. Given that laboratory methods are expensive and not optimized, computational models are increasingly used for discovering disease-related microbes. Here, a new neighbor approach based on two-tier Bi-Random Walk is proposed for potential disease-related microbes, known as NTBiRW. In this method, the first step is to construct multiple microbe similarities and disease similarities. Then, three kinds of microbe/disease similarity are integrated through two-tier Bi-Random Walk to obtain the final integrated microbe/disease similarity network with different weights. Finally, Weighted K Nearest Known Neighbors (WKNKN) is used for prediction based on the final similarity network. In addition, leave-one-out cross-validation (LOOCV) and 5-fold cross-validation (5-fold CV) are applied for evaluating the performance of NTBiRW. Multiple evaluating indicators are taken to show the performance from multiple perspectives. And most of the evaluation index values of NTBiRW are better than those of the compared methods. Moreover, in case studies on atopic dermatitis and psoriasis, most of the first 10 candidates in the final result can be proven. This also demonstrates the capability of NTBiRW for discovering new associations. Therefore, this method can contribute to the discovery of disease-related microbes and thus offer new thoughts for further understanding the pathogenesis of diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助全若之采纳,获得10
刚刚
刚刚
1秒前
CodeCraft应助fxy采纳,获得10
2秒前
啦啦啦发布了新的文献求助10
2秒前
高贵云朵发布了新的文献求助10
2秒前
3秒前
研友_VZG7GZ应助陈陈采纳,获得10
4秒前
不知道完成签到,获得积分10
4秒前
5秒前
CHANGE发布了新的文献求助10
5秒前
5秒前
打打应助生动茹妖采纳,获得10
6秒前
6秒前
橙子皮发布了新的文献求助10
6秒前
小语丝发布了新的文献求助10
6秒前
徐长卿完成签到 ,获得积分10
7秒前
羞涩的寒风关注了科研通微信公众号
8秒前
快乐黑猫完成签到,获得积分10
8秒前
8秒前
852应助wy1693207859采纳,获得10
9秒前
Orange应助RoyChen采纳,获得30
9秒前
黑妹发布了新的文献求助10
10秒前
辛勤的苡发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
万能图书馆应助da采纳,获得10
12秒前
小四火发布了新的文献求助10
12秒前
半江发布了新的文献求助10
13秒前
李爱国应助辛勤小鸽子采纳,获得10
13秒前
13秒前
14秒前
14秒前
14秒前
14秒前
14秒前
南与枝发布了新的文献求助10
15秒前
johnny发布了新的文献求助10
15秒前
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979289
求助须知:如何正确求助?哪些是违规求助? 3523220
关于积分的说明 11216715
捐赠科研通 3260668
什么是DOI,文献DOI怎么找? 1800176
邀请新用户注册赠送积分活动 878854
科研通“疑难数据库(出版商)”最低求助积分说明 807111