Digital Image Analysis of Ki67 Heterogeneity Improves the Diagnosis and Prognosis of Gastroenteropancreatic Neuroendocrine Neoplasms

分级(工程) 神经内分泌肿瘤 肿瘤异质性 病理 数字图像分析 医学 数字化病理学 肿瘤科 神经内分泌癌 内科学 生物 癌症 计算机科学 生态学 计算机视觉
作者
Meng Zhang,Cong Tan,Xin Wang,Xie Ding,Boqiang Zhang,Zuopeng Yang,Yu Wang,Weiqi Sheng,Dan Huang
出处
期刊:Modern Pathology [Springer Nature]
卷期号:36 (1): 100017-100017 被引量:15
标识
DOI:10.1016/j.modpat.2022.100017
摘要

Ki67 is a reliable grading and prognostic biomarker of gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs). The intratumor heterogeneity of Ki67, correlated with tumor progression, is a valuable factor that requires image analysis. The application of digital image analysis (DIA) enables new approaches for the assessment of Ki67 heterogeneity distribution. We investigated the diagnostic utility of Ki67 heterogeneity parameters in the classification and grading of GEP-NENs and explored their clinical values with regard to their prognostic relevance. The DIA algorithm was performed on whole-slide images of 102 resection samples with Ki67 staining. Good agreement was observed between the manual and DIA methods in the hotspot evaluation (R2 = 0.94, P < .01). Using the grid-based region of interest approach, score-based heat maps provided a distinctive overview of the intratumoral distribution of Ki67 between neuroendocrine carcinomas and neuroendocrine tumors. The computation of heterogeneity parameters related to DIA-determined Ki67 showed that the coefficient of variation and Morisita-Horn index were directly related to the classification and grading of GEP-NENs and provided insights into distinguishing high-grade neuroendocrine neoplasms (grade 3 neuroendocrine tumor vs neuroendocrine carcinoma, P < .01). Our study showed that a high Morisita-Horn index correlated with poor disease-free survival (multivariate analysis: hazard ratio, 56.69), which was found to be the only independent predictor of disease-free survival in patients with GEP-NEN. These spatial biomarkers have an impact on the classification and grading of tumors and highlight the prognostic associations of tumor heterogeneity. Digitization of Ki67 variations provides a direct and objective measurement of tumor heterogeneity and better predicts the biological behavior of GEP-NENs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
在水一方应助水123采纳,获得10
刚刚
学术牛马发布了新的文献求助10
1秒前
1秒前
子车茗应助丁真人采纳,获得30
1秒前
无机盐发布了新的文献求助10
1秒前
3秒前
张静瑶完成签到,获得积分10
3秒前
群山完成签到 ,获得积分10
4秒前
4秒前
冷酷的水壶完成签到,获得积分10
5秒前
5秒前
雾山五行发布了新的文献求助10
7秒前
希望天下0贩的0应助Alan采纳,获得10
7秒前
脑洞疼应助熊熊阁采纳,获得10
7秒前
打打应助xiaoyao采纳,获得10
7秒前
8秒前
鲲kun完成签到,获得积分10
8秒前
8秒前
科研通AI6应助wwl采纳,获得10
8秒前
良景似尘完成签到,获得积分10
9秒前
聪慧的白猫完成签到,获得积分10
9秒前
财路通八方完成签到 ,获得积分10
9秒前
LL完成签到,获得积分10
10秒前
好好学习发布了新的文献求助10
10秒前
11秒前
华仔应助终抵星空采纳,获得10
11秒前
田様应助等待的凝芙采纳,获得10
11秒前
共享精神应助仁仁仁采纳,获得10
11秒前
文盲文案完成签到,获得积分10
12秒前
子晓时夜完成签到,获得积分10
13秒前
wen完成签到,获得积分10
13秒前
13秒前
大个应助单薄的发卡采纳,获得10
13秒前
Hello应助123采纳,获得10
13秒前
Hello应助无机盐采纳,获得10
14秒前
研友_ZzwoR8完成签到 ,获得积分10
15秒前
开朗指甲油完成签到,获得积分10
16秒前
16秒前
小蘑菇应助好好学习采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600383
求助须知:如何正确求助?哪些是违规求助? 4686008
关于积分的说明 14841407
捐赠科研通 4676475
什么是DOI,文献DOI怎么找? 2538721
邀请新用户注册赠送积分活动 1505781
关于科研通互助平台的介绍 1471186