Predicting Drug-Target Affinity by Learning Protein Knowledge From Biological Networks

计算机科学 人工智能 药物靶点 机器学习 化学 生物化学
作者
Wenjian Ma,Shugang Zhang,Zhen Li,Mingjian Jiang,Shuang Wang,Nianfan Guo,Yuanfei Li,Xiangpeng Bi,Huasen Jiang,Zhiqiang Wei
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (4): 2128-2137 被引量:27
标识
DOI:10.1109/jbhi.2023.3240305
摘要

Predicting drug-target affinity (DTA) is a crucial step in the process of drug discovery. Efficient and accurate prediction of DTA would greatly reduce the time and economic cost of new drug development, which has encouraged the emergence of a large number of deep learning-based DTA prediction methods. In terms of the representation of target proteins, current methods can be classified into 1D sequence- and 2D-protein graph-based methods. However, both two approaches focused only on the inherent properties of the target protein, but neglected the broad prior knowledge regarding protein interactions that have been clearly elucidated in past decades. Aiming at the above issue, this work presents an end-to-end DTA prediction method named MSF-DTA (Multi-Source Feature Fusion-based Drug-Target Affinity). The contributions can be summarized as follows. First, MSF-DTA adopts a novel "neighboring feature"-based protein representation. Instead of utilizing only the inherent features of a target protein, MSF-DTA gathers additional information for the target protein from its biologically related "neighboring" proteins in PPI (i.e., protein-protein interaction) and SSN (i.e., sequence similarity) networks to get prior knowledge. Second, the representation was learned using an advanced graph pre-training framework, VGAE, which could not only gather node features but also learn topological connections, therefore contributing to a richer protein representation and benefiting the downstream DTA prediction task. This study provides new perspective for the DTA prediction task, and evaluation results demonstrated that MSF-DTA obtained superior performances compared to current state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
文学痞完成签到,获得积分10
刚刚
良医完成签到 ,获得积分10
刚刚
Foldog完成签到,获得积分10
1秒前
花生王子完成签到 ,获得积分10
1秒前
afterly发布了新的文献求助10
2秒前
hyq发布了新的文献求助10
2秒前
积极的黑猫完成签到,获得积分10
2秒前
pp发布了新的文献求助10
3秒前
熊博士完成签到,获得积分10
4秒前
kkkkkkkkkkkk发布了新的文献求助10
4秒前
5秒前
Song完成签到,获得积分10
5秒前
liusui完成签到 ,获得积分10
5秒前
猴王完成签到,获得积分10
6秒前
寒冷的寒梦完成签到,获得积分10
8秒前
8秒前
中华有为完成签到,获得积分10
8秒前
调皮的蓝天完成签到 ,获得积分10
9秒前
源宝完成签到 ,获得积分10
9秒前
1210xi完成签到,获得积分10
9秒前
miku完成签到 ,获得积分10
10秒前
Jasper应助安详念蕾采纳,获得10
11秒前
Luvvv发布了新的文献求助10
12秒前
斯文败类应助zyn采纳,获得10
12秒前
13秒前
xiuxiuzhang完成签到 ,获得积分10
13秒前
VIEAAA完成签到,获得积分10
14秒前
小树发布了新的文献求助10
15秒前
希望天下0贩的0应助hyq采纳,获得10
16秒前
16秒前
顺利紫山完成签到,获得积分10
16秒前
adamchase完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
18秒前
xxzw完成签到 ,获得积分10
18秒前
油面摊子完成签到,获得积分10
18秒前
jlk完成签到,获得积分10
18秒前
搞怪孤丝完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600134
求助须知:如何正确求助?哪些是违规求助? 4685840
关于积分的说明 14839918
捐赠科研通 4675103
什么是DOI,文献DOI怎么找? 2538540
邀请新用户注册赠送积分活动 1505668
关于科研通互助平台的介绍 1471124