Predicting Drug-Target Affinity by Learning Protein Knowledge From Biological Networks

计算机科学 人工智能 药物靶点 机器学习 化学 生物化学
作者
Wenjian Ma,Shugang Zhang,Zhen Li,Mingjian Jiang,Shuang Wang,Nianfan Guo,Yuanfei Li,Xiangpeng Bi,Huasen Jiang,Zhiqiang Wei
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (4): 2128-2137 被引量:21
标识
DOI:10.1109/jbhi.2023.3240305
摘要

Predicting drug-target affinity (DTA) is a crucial step in the process of drug discovery. Efficient and accurate prediction of DTA would greatly reduce the time and economic cost of new drug development, which has encouraged the emergence of a large number of deep learning-based DTA prediction methods. In terms of the representation of target proteins, current methods can be classified into 1D sequence- and 2D-protein graph-based methods. However, both two approaches focused only on the inherent properties of the target protein, but neglected the broad prior knowledge regarding protein interactions that have been clearly elucidated in past decades. Aiming at the above issue, this work presents an end-to-end DTA prediction method named MSF-DTA (Multi-Source Feature Fusion-based Drug-Target Affinity). The contributions can be summarized as follows. First, MSF-DTA adopts a novel "neighboring feature"-based protein representation. Instead of utilizing only the inherent features of a target protein, MSF-DTA gathers additional information for the target protein from its biologically related "neighboring" proteins in PPI (i.e., protein-protein interaction) and SSN (i.e., sequence similarity) networks to get prior knowledge. Second, the representation was learned using an advanced graph pre-training framework, VGAE, which could not only gather node features but also learn topological connections, therefore contributing to a richer protein representation and benefiting the downstream DTA prediction task. This study provides new perspective for the DTA prediction task, and evaluation results demonstrated that MSF-DTA obtained superior performances compared to current state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dudidu完成签到,获得积分10
刚刚
刚刚
Exile完成签到,获得积分10
刚刚
zoe完成签到 ,获得积分10
1秒前
KJ驳回了大模型应助
2秒前
眼睛大妙y完成签到,获得积分10
2秒前
Ran-HT完成签到,获得积分10
2秒前
sky完成签到,获得积分10
3秒前
悦耳的乐松完成签到,获得积分10
3秒前
池林完成签到,获得积分10
4秒前
小星发布了新的文献求助10
4秒前
4秒前
ygg完成签到,获得积分10
5秒前
由由完成签到,获得积分10
5秒前
缓慢晟睿发布了新的文献求助10
6秒前
雅雅完成签到,获得积分10
6秒前
眼睛大妙y发布了新的文献求助10
6秒前
372925abc完成签到,获得积分10
7秒前
liuzhou完成签到,获得积分20
8秒前
科研通AI2S应助张琳琳采纳,获得10
8秒前
8秒前
冷月fan完成签到,获得积分10
9秒前
9秒前
荷包蛋完成签到,获得积分10
9秒前
10秒前
10秒前
墨尔本的翡翠完成签到 ,获得积分20
11秒前
666完成签到 ,获得积分10
11秒前
haonanchen完成签到,获得积分10
11秒前
date316发布了新的文献求助10
11秒前
小小鹿发布了新的文献求助10
12秒前
justonce发布了新的文献求助10
12秒前
YT完成签到,获得积分10
12秒前
揽星完成签到,获得积分10
13秒前
Yuee发布了新的文献求助10
13秒前
春风依旧发布了新的文献求助10
14秒前
颉颉发布了新的文献求助10
14秒前
华东小可爱完成签到,获得积分10
15秒前
阿苏完成签到 ,获得积分10
15秒前
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044