Predicting Drug-Target Affinity by Learning Protein Knowledge From Biological Networks

计算机科学 人工智能 药物靶点 机器学习 化学 生物化学
作者
Wenjian Ma,Shugang Zhang,Zhen Li,Mingjian Jiang,Shuang Wang,Nianfan Guo,Yuanfei Li,Xiangpeng Bi,Huasen Jiang,Zhiqiang Wei
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (4): 2128-2137 被引量:27
标识
DOI:10.1109/jbhi.2023.3240305
摘要

Predicting drug-target affinity (DTA) is a crucial step in the process of drug discovery. Efficient and accurate prediction of DTA would greatly reduce the time and economic cost of new drug development, which has encouraged the emergence of a large number of deep learning-based DTA prediction methods. In terms of the representation of target proteins, current methods can be classified into 1D sequence- and 2D-protein graph-based methods. However, both two approaches focused only on the inherent properties of the target protein, but neglected the broad prior knowledge regarding protein interactions that have been clearly elucidated in past decades. Aiming at the above issue, this work presents an end-to-end DTA prediction method named MSF-DTA (Multi-Source Feature Fusion-based Drug-Target Affinity). The contributions can be summarized as follows. First, MSF-DTA adopts a novel "neighboring feature"-based protein representation. Instead of utilizing only the inherent features of a target protein, MSF-DTA gathers additional information for the target protein from its biologically related "neighboring" proteins in PPI (i.e., protein-protein interaction) and SSN (i.e., sequence similarity) networks to get prior knowledge. Second, the representation was learned using an advanced graph pre-training framework, VGAE, which could not only gather node features but also learn topological connections, therefore contributing to a richer protein representation and benefiting the downstream DTA prediction task. This study provides new perspective for the DTA prediction task, and evaluation results demonstrated that MSF-DTA obtained superior performances compared to current state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唐泽雪穗应助难过的尔丝采纳,获得10
刚刚
翻译度发布了新的文献求助10
1秒前
2秒前
星辰大海应助科研通管家采纳,获得30
2秒前
赵婷婷发布了新的文献求助10
2秒前
小杭76应助科研通管家采纳,获得10
2秒前
是多少应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
归尘发布了新的文献求助10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
小杭76应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
5shui发布了新的文献求助10
2秒前
沉默洋葱完成签到,获得积分10
2秒前
馆长应助科研通管家采纳,获得30
2秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
hqz发布了新的文献求助10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
ding应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得30
4秒前
华仔应助科研通管家采纳,获得30
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
陌路完成签到,获得积分10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
5秒前
paper888发布了新的文献求助20
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
香蕉觅云应助有机小鸟采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
A Case Study on Hotels as Noncongregate Emergency Living Accommodations for Returning Citizens 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5017316
求助须知:如何正确求助?哪些是违规求助? 4257037
关于积分的说明 13267322
捐赠科研通 4061271
什么是DOI,文献DOI怎么找? 2221184
邀请新用户注册赠送积分活动 1230498
关于科研通互助平台的介绍 1153124