Predicting Drug-Target Affinity by Learning Protein Knowledge From Biological Networks

计算机科学 人工智能 药物靶点 机器学习 化学 生物化学
作者
Wenjian Ma,Shugang Zhang,Zhen Li,Mingjian Jiang,Shuang Wang,Nianfan Guo,Yuanfei Li,Xiangpeng Bi,Huasen Jiang,Zhiqiang Wei
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (4): 2128-2137 被引量:36
标识
DOI:10.1109/jbhi.2023.3240305
摘要

Predicting drug-target affinity (DTA) is a crucial step in the process of drug discovery. Efficient and accurate prediction of DTA would greatly reduce the time and economic cost of new drug development, which has encouraged the emergence of a large number of deep learning-based DTA prediction methods. In terms of the representation of target proteins, current methods can be classified into 1D sequence- and 2D-protein graph-based methods. However, both two approaches focused only on the inherent properties of the target protein, but neglected the broad prior knowledge regarding protein interactions that have been clearly elucidated in past decades. Aiming at the above issue, this work presents an end-to-end DTA prediction method named MSF-DTA (Multi-Source Feature Fusion-based Drug-Target Affinity). The contributions can be summarized as follows. First, MSF-DTA adopts a novel "neighboring feature"-based protein representation. Instead of utilizing only the inherent features of a target protein, MSF-DTA gathers additional information for the target protein from its biologically related "neighboring" proteins in PPI (i.e., protein-protein interaction) and SSN (i.e., sequence similarity) networks to get prior knowledge. Second, the representation was learned using an advanced graph pre-training framework, VGAE, which could not only gather node features but also learn topological connections, therefore contributing to a richer protein representation and benefiting the downstream DTA prediction task. This study provides new perspective for the DTA prediction task, and evaluation results demonstrated that MSF-DTA obtained superior performances compared to current state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Moonchild完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助30
2秒前
Zzx完成签到 ,获得积分10
5秒前
激动的xx完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
9秒前
淡然的青旋完成签到 ,获得积分10
9秒前
CJY完成签到 ,获得积分10
11秒前
woaikeyan完成签到 ,获得积分10
11秒前
qianci2009完成签到,获得积分0
12秒前
16秒前
乔杰完成签到 ,获得积分10
16秒前
17秒前
柔弱翎完成签到 ,获得积分10
19秒前
husthenry发布了新的文献求助30
19秒前
量子星尘发布了新的文献求助10
21秒前
耍酷的指甲油完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
27秒前
27秒前
33秒前
桐桐应助依然灬聆听采纳,获得10
35秒前
量子星尘发布了新的文献求助10
36秒前
白昼の月完成签到 ,获得积分0
37秒前
郭德久完成签到 ,获得积分10
37秒前
43秒前
44秒前
MoodMeed完成签到,获得积分10
44秒前
rigelfalcon完成签到,获得积分10
46秒前
沉静的清涟完成签到,获得积分10
48秒前
量子星尘发布了新的文献求助10
50秒前
50秒前
胖胖完成签到 ,获得积分0
52秒前
量子星尘发布了新的文献求助10
52秒前
lyw发布了新的文献求助10
53秒前
1分钟前
整齐豆芽完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
lr完成签到 ,获得积分10
1分钟前
Nobody完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764947
求助须知:如何正确求助?哪些是违规求助? 5556663
关于积分的说明 15406774
捐赠科研通 4899842
什么是DOI,文献DOI怎么找? 2636046
邀请新用户注册赠送积分活动 1584226
关于科研通互助平台的介绍 1539538