Predicting Drug-Target Affinity by Learning Protein Knowledge From Biological Networks

计算机科学 人工智能 药物靶点 机器学习 化学 生物化学
作者
Wenjian Ma,Shugang Zhang,Zhen Li,Mingjian Jiang,Shuang Wang,Nianfan Guo,Yuanfei Li,Xiangpeng Bi,Huasen Jiang,Zhiqiang Wei
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (4): 2128-2137 被引量:27
标识
DOI:10.1109/jbhi.2023.3240305
摘要

Predicting drug-target affinity (DTA) is a crucial step in the process of drug discovery. Efficient and accurate prediction of DTA would greatly reduce the time and economic cost of new drug development, which has encouraged the emergence of a large number of deep learning-based DTA prediction methods. In terms of the representation of target proteins, current methods can be classified into 1D sequence- and 2D-protein graph-based methods. However, both two approaches focused only on the inherent properties of the target protein, but neglected the broad prior knowledge regarding protein interactions that have been clearly elucidated in past decades. Aiming at the above issue, this work presents an end-to-end DTA prediction method named MSF-DTA (Multi-Source Feature Fusion-based Drug-Target Affinity). The contributions can be summarized as follows. First, MSF-DTA adopts a novel "neighboring feature"-based protein representation. Instead of utilizing only the inherent features of a target protein, MSF-DTA gathers additional information for the target protein from its biologically related "neighboring" proteins in PPI (i.e., protein-protein interaction) and SSN (i.e., sequence similarity) networks to get prior knowledge. Second, the representation was learned using an advanced graph pre-training framework, VGAE, which could not only gather node features but also learn topological connections, therefore contributing to a richer protein representation and benefiting the downstream DTA prediction task. This study provides new perspective for the DTA prediction task, and evaluation results demonstrated that MSF-DTA obtained superior performances compared to current state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
lalala完成签到,获得积分20
3秒前
南吕完成签到 ,获得积分10
3秒前
东东完成签到,获得积分10
4秒前
yin景景发布了新的文献求助10
6秒前
薯条完成签到,获得积分10
7秒前
元舒甜完成签到,获得积分10
7秒前
8秒前
紫薰完成签到,获得积分10
10秒前
CodeCraft应助大气的人雄采纳,获得10
12秒前
叕叕完成签到,获得积分10
13秒前
senli2018发布了新的文献求助10
16秒前
17秒前
丘比特应助莓莓采纳,获得20
19秒前
锦瑟完成签到 ,获得积分10
19秒前
Talha发布了新的文献求助10
21秒前
21秒前
酥瓜完成签到 ,获得积分10
23秒前
呆萌雁玉完成签到,获得积分10
23秒前
学术laji发布了新的文献求助10
26秒前
healthy发布了新的文献求助10
27秒前
27秒前
元舒甜发布了新的文献求助10
27秒前
29秒前
30秒前
CodeCraft应助weiyi采纳,获得10
30秒前
30秒前
GaN完成签到,获得积分20
31秒前
32秒前
32秒前
Llllllllily完成签到,获得积分10
32秒前
受伤问凝完成签到 ,获得积分10
32秒前
lili发布了新的文献求助10
33秒前
SCI又中了发布了新的文献求助10
34秒前
35秒前
南汐寒笙关注了科研通微信公众号
35秒前
36秒前
GaN发布了新的文献求助10
36秒前
犬来八荒发布了新的文献求助10
36秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344792
求助须知:如何正确求助?哪些是违规求助? 4479975
关于积分的说明 13944959
捐赠科研通 4377204
什么是DOI,文献DOI怎么找? 2405147
邀请新用户注册赠送积分活动 1397687
关于科研通互助平台的介绍 1370008