Predicting Drug-Target Affinity by Learning Protein Knowledge From Biological Networks

计算机科学 人工智能 药物靶点 机器学习 化学 生物化学
作者
Wenjian Ma,Shugang Zhang,Zhen Li,Mingjian Jiang,Shuang Wang,Nianfan Guo,Yuanfei Li,Xiangpeng Bi,Huasen Jiang,Zhiqiang Wei
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (4): 2128-2137 被引量:27
标识
DOI:10.1109/jbhi.2023.3240305
摘要

Predicting drug-target affinity (DTA) is a crucial step in the process of drug discovery. Efficient and accurate prediction of DTA would greatly reduce the time and economic cost of new drug development, which has encouraged the emergence of a large number of deep learning-based DTA prediction methods. In terms of the representation of target proteins, current methods can be classified into 1D sequence- and 2D-protein graph-based methods. However, both two approaches focused only on the inherent properties of the target protein, but neglected the broad prior knowledge regarding protein interactions that have been clearly elucidated in past decades. Aiming at the above issue, this work presents an end-to-end DTA prediction method named MSF-DTA (Multi-Source Feature Fusion-based Drug-Target Affinity). The contributions can be summarized as follows. First, MSF-DTA adopts a novel "neighboring feature"-based protein representation. Instead of utilizing only the inherent features of a target protein, MSF-DTA gathers additional information for the target protein from its biologically related "neighboring" proteins in PPI (i.e., protein-protein interaction) and SSN (i.e., sequence similarity) networks to get prior knowledge. Second, the representation was learned using an advanced graph pre-training framework, VGAE, which could not only gather node features but also learn topological connections, therefore contributing to a richer protein representation and benefiting the downstream DTA prediction task. This study provides new perspective for the DTA prediction task, and evaluation results demonstrated that MSF-DTA obtained superior performances compared to current state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
梨涡MAMA完成签到,获得积分10
1秒前
1秒前
2秒前
桐桐应助Nat采纳,获得10
4秒前
Orange应助单原子的世界采纳,获得10
5秒前
zqgxiangbiye完成签到,获得积分10
6秒前
彭于晏应助zz想吃鱼采纳,获得10
6秒前
6秒前
ii完成签到,获得积分10
7秒前
梦涵完成签到 ,获得积分10
9秒前
edsenone发布了新的文献求助10
10秒前
11秒前
welch发布了新的文献求助20
12秒前
田様应助无私的念文采纳,获得10
12秒前
14秒前
傲娇老四完成签到,获得积分10
14秒前
99完成签到,获得积分10
14秒前
小蘑菇应助ayu采纳,获得10
14秒前
14秒前
泡芙完成签到 ,获得积分10
15秒前
匡匡匡发布了新的文献求助10
15秒前
kiyo完成签到,获得积分10
16秒前
深情安青应助小羊羊采纳,获得10
17秒前
ph完成签到 ,获得积分10
17秒前
叶迎发布了新的文献求助10
18秒前
李健应助素颜采纳,获得30
18秒前
19秒前
斯文败类应助ii采纳,获得30
20秒前
QW111完成签到,获得积分10
20秒前
jz完成签到,获得积分10
20秒前
20秒前
20秒前
要减肥的冥完成签到,获得积分10
21秒前
21秒前
21秒前
huiwanfeifei完成签到,获得积分10
22秒前
王359完成签到,获得积分10
22秒前
22秒前
aibing完成签到,获得积分20
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605599
求助须知:如何正确求助?哪些是违规求助? 4690155
关于积分的说明 14862533
捐赠科研通 4702014
什么是DOI,文献DOI怎么找? 2542183
邀请新用户注册赠送积分活动 1507817
关于科研通互助平台的介绍 1472113