Predicting Drug-Target Affinity by Learning Protein Knowledge From Biological Networks

计算机科学 人工智能 药物靶点 机器学习 化学 生物化学
作者
Wenjian Ma,Shugang Zhang,Zhen Li,Mingjian Jiang,Shuang Wang,Nianfan Guo,Yuanfei Li,Xiangpeng Bi,Huasen Jiang,Zhiqiang Wei
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (4): 2128-2137 被引量:36
标识
DOI:10.1109/jbhi.2023.3240305
摘要

Predicting drug-target affinity (DTA) is a crucial step in the process of drug discovery. Efficient and accurate prediction of DTA would greatly reduce the time and economic cost of new drug development, which has encouraged the emergence of a large number of deep learning-based DTA prediction methods. In terms of the representation of target proteins, current methods can be classified into 1D sequence- and 2D-protein graph-based methods. However, both two approaches focused only on the inherent properties of the target protein, but neglected the broad prior knowledge regarding protein interactions that have been clearly elucidated in past decades. Aiming at the above issue, this work presents an end-to-end DTA prediction method named MSF-DTA (Multi-Source Feature Fusion-based Drug-Target Affinity). The contributions can be summarized as follows. First, MSF-DTA adopts a novel "neighboring feature"-based protein representation. Instead of utilizing only the inherent features of a target protein, MSF-DTA gathers additional information for the target protein from its biologically related "neighboring" proteins in PPI (i.e., protein-protein interaction) and SSN (i.e., sequence similarity) networks to get prior knowledge. Second, the representation was learned using an advanced graph pre-training framework, VGAE, which could not only gather node features but also learn topological connections, therefore contributing to a richer protein representation and benefiting the downstream DTA prediction task. This study provides new perspective for the DTA prediction task, and evaluation results demonstrated that MSF-DTA obtained superior performances compared to current state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
牛牛牛牛牛牛牛牛完成签到 ,获得积分10
2秒前
酷酷伟宸发布了新的文献求助10
3秒前
陈小明发布了新的文献求助10
3秒前
沉静傻姑发布了新的文献求助10
3秒前
法外狂徒发布了新的文献求助100
4秒前
呼吸自然发布了新的文献求助20
4秒前
小鲨鱼发布了新的文献求助10
4秒前
xinran完成签到,获得积分20
5秒前
顾矜应助狗东西采纳,获得10
5秒前
纪你巴完成签到,获得积分10
5秒前
小樊啦完成签到 ,获得积分10
7秒前
7秒前
牛大锤完成签到,获得积分10
7秒前
所所应助春风明月采纳,获得10
8秒前
七月完成签到,获得积分20
9秒前
9秒前
嘿哈哈完成签到,获得积分10
9秒前
胡俊豪发布了新的文献求助10
10秒前
10秒前
科研通AI6应助Elite采纳,获得10
10秒前
共享精神应助qiii采纳,获得10
10秒前
11秒前
向北游完成签到,获得积分10
11秒前
11秒前
华仔应助年轻海云采纳,获得10
11秒前
josieyu1999完成签到,获得积分10
13秒前
dc发布了新的文献求助10
14秒前
mmxr完成签到,获得积分20
14秒前
法外狂徒完成签到,获得积分10
14秒前
哒哒哒发布了新的文献求助10
14秒前
万1发布了新的文献求助10
15秒前
科研通AI6应助fzzf采纳,获得10
15秒前
雪碧不是碳酸完成签到,获得积分10
16秒前
16秒前
漫漫发布了新的文献求助10
16秒前
在水一方应助内向的雨泽采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277