Predicting Drug-Target Affinity by Learning Protein Knowledge From Biological Networks

计算机科学 人工智能 药物靶点 机器学习 化学 生物化学
作者
Wenjian Ma,Shugang Zhang,Zhen Li,Mingjian Jiang,Shuang Wang,Nianfan Guo,Yuanfei Li,Xiangpeng Bi,Huasen Jiang,Zhiqiang Wei
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (4): 2128-2137 被引量:11
标识
DOI:10.1109/jbhi.2023.3240305
摘要

Predicting drug-target affinity (DTA) is a crucial step in the process of drug discovery. Efficient and accurate prediction of DTA would greatly reduce the time and economic cost of new drug development, which has encouraged the emergence of a large number of deep learning-based DTA prediction methods. In terms of the representation of target proteins, current methods can be classified into 1D sequence- and 2D-protein graph-based methods. However, both two approaches focused only on the inherent properties of the target protein, but neglected the broad prior knowledge regarding protein interactions that have been clearly elucidated in past decades. Aiming at the above issue, this work presents an end-to-end DTA prediction method named MSF-DTA ( M ulti- S ource F eature Fusion-based D rug- T arget A ffinity). The contributions can be summarized as follows. First, MSF-DTA adopts a novel “neighboring feature”-based protein representation. Instead of utilizing only the inherent features of a target protein, MSF-DTA gathers additional information for the target protein from its biologically related “neighboring” proteins in PPI (i.e., protein-protein interaction) and SSN (i.e., sequence similarity) networks to get prior knowledge. Second, the representation was learned using an advanced graph pre-training framework, VGAE, which could not only gather node features but also learn topological connections, therefore contributing to a richer protein representation and benefiting the downstream DTA prediction task. This study provides new perspective for the DTA prediction task, and evaluation results demonstrated that MSF-DTA obtained superior performances compared to current state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
蒸尘尘发布了新的文献求助10
1秒前
1秒前
周周完成签到 ,获得积分10
2秒前
隐形曼青应助pure采纳,获得10
2秒前
鲨鱼辣椒发布了新的文献求助10
3秒前
4秒前
随便完成签到,获得积分20
5秒前
CSUST科研一哥应助高艳采纳,获得10
5秒前
CipherSage应助皮灵犀采纳,获得10
6秒前
痴痴的噜完成签到,获得积分10
6秒前
流浪完成签到,获得积分10
7秒前
winwin完成签到,获得积分10
7秒前
7秒前
陈chq发布了新的文献求助10
9秒前
科研通AI2S应助大胖采纳,获得10
10秒前
11秒前
金属多酚完成签到 ,获得积分10
12秒前
12秒前
13秒前
鲨鱼辣椒完成签到,获得积分20
14秒前
黎耀辉完成签到,获得积分10
14秒前
韩尚宁完成签到,获得积分10
16秒前
Luke发布了新的文献求助10
16秒前
涛哥完成签到,获得积分10
17秒前
木村拓哉发布了新的文献求助10
17秒前
18秒前
成就的孤晴完成签到 ,获得积分10
18秒前
qipupu222完成签到 ,获得积分10
20秒前
尛破孩完成签到,获得积分10
20秒前
21秒前
22秒前
咕噜噜完成签到 ,获得积分10
23秒前
24秒前
26秒前
26秒前
研友_VZG7GZ应助单纯雍采纳,获得10
27秒前
鱼鱼完成签到 ,获得积分10
27秒前
sansan完成签到,获得积分10
28秒前
ru完成签到 ,获得积分10
29秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240655
求助须知:如何正确求助?哪些是违规求助? 2885414
关于积分的说明 8238264
捐赠科研通 2553838
什么是DOI,文献DOI怎么找? 1381934
科研通“疑难数据库(出版商)”最低求助积分说明 649384
邀请新用户注册赠送积分活动 625030