Predicting Drug-Target Affinity by Learning Protein Knowledge From Biological Networks

计算机科学 人工智能 药物靶点 机器学习 化学 生物化学
作者
Wenjian Ma,Shugang Zhang,Zhen Li,Mingjian Jiang,Shuang Wang,Nianfan Guo,Yuanfei Li,Xiangpeng Bi,Huasen Jiang,Zhiqiang Wei
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (4): 2128-2137 被引量:27
标识
DOI:10.1109/jbhi.2023.3240305
摘要

Predicting drug-target affinity (DTA) is a crucial step in the process of drug discovery. Efficient and accurate prediction of DTA would greatly reduce the time and economic cost of new drug development, which has encouraged the emergence of a large number of deep learning-based DTA prediction methods. In terms of the representation of target proteins, current methods can be classified into 1D sequence- and 2D-protein graph-based methods. However, both two approaches focused only on the inherent properties of the target protein, but neglected the broad prior knowledge regarding protein interactions that have been clearly elucidated in past decades. Aiming at the above issue, this work presents an end-to-end DTA prediction method named MSF-DTA (Multi-Source Feature Fusion-based Drug-Target Affinity). The contributions can be summarized as follows. First, MSF-DTA adopts a novel "neighboring feature"-based protein representation. Instead of utilizing only the inherent features of a target protein, MSF-DTA gathers additional information for the target protein from its biologically related "neighboring" proteins in PPI (i.e., protein-protein interaction) and SSN (i.e., sequence similarity) networks to get prior knowledge. Second, the representation was learned using an advanced graph pre-training framework, VGAE, which could not only gather node features but also learn topological connections, therefore contributing to a richer protein representation and benefiting the downstream DTA prediction task. This study provides new perspective for the DTA prediction task, and evaluation results demonstrated that MSF-DTA obtained superior performances compared to current state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
诸葛高澜完成签到,获得积分10
2秒前
鳗鱼不尤完成签到,获得积分10
3秒前
LL完成签到,获得积分10
4秒前
Shirley完成签到,获得积分10
4秒前
kylin发布了新的文献求助10
4秒前
Liziqi823完成签到,获得积分10
5秒前
小太阳完成签到,获得积分10
5秒前
技术的不能发表完成签到 ,获得积分10
6秒前
7秒前
卡卡完成签到 ,获得积分10
7秒前
浮游应助丙队长采纳,获得10
8秒前
Aoia完成签到,获得积分10
9秒前
Hi完成签到,获得积分10
9秒前
kong完成签到,获得积分10
9秒前
左西完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
JFy完成签到 ,获得积分10
10秒前
怡然安南完成签到 ,获得积分10
12秒前
沫柠完成签到 ,获得积分10
13秒前
卡其嘛亮完成签到,获得积分10
14秒前
十五完成签到,获得积分10
14秒前
华仔应助东山采纳,获得10
15秒前
老猫头鹰完成签到,获得积分10
16秒前
liu完成签到 ,获得积分10
16秒前
18秒前
19秒前
小药童应助外星人采纳,获得10
20秒前
21秒前
21秒前
22秒前
22秒前
安琪完成签到,获得积分10
22秒前
wsqg123完成签到,获得积分10
23秒前
chang完成签到 ,获得积分10
24秒前
无限的千凝完成签到 ,获得积分10
25秒前
sm关注了科研通微信公众号
26秒前
不要慌完成签到 ,获得积分10
27秒前
28秒前
29秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450513
求助须知:如何正确求助?哪些是违规求助? 4558247
关于积分的说明 14265829
捐赠科研通 4481797
什么是DOI,文献DOI怎么找? 2454981
邀请新用户注册赠送积分活动 1445752
关于科研通互助平台的介绍 1421882