An Improved SSD-Like Deep Network-Based Object Detection Method for Indoor Scenes

计算机科学 人工智能 目标检测 计算机视觉 特征提取 对象(语法) 特征(语言学) 探测器 深度学习 模式识别(心理学) 电信 哲学 语言学
作者
Jianjun Ni,Kang Shen,Yan Chen,Simon X. Yang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-15 被引量:8
标识
DOI:10.1109/tim.2023.3244819
摘要

The indoor scene object detection technology is of important research significance, which is one of the popular research topics in the field of scene understanding for indoor robots. In recent years, the solutions based on deep learning have achieved good results in object detection. However, there are still some problems to be further studied in indoor object detection methods, such as lighting problem and occlusion problem caused by the complexity of the indoor environment. Aiming at these problems, an improved object detection method based on deep neural networks is proposed in this article, which uses a framework similar to the single-shot multibox detector (SSD). In the proposed method, an improved ResNet50 network is used to enhance the transmission of information, and the feature expression capability of the feature extraction network is improved. At the same time, a multiscale contextual information extraction (MCIE) module is used to extract the contextual information of the indoor scene, so as to improve the indoor object detection effect. In addition, an improved dual-threshold non-maximum suppression (DT-NMS) algorithm is used to alleviate the occlusion problem in indoor scenes. Finally, the public dataset SUN2012 is further screened for the special application of indoor scene object detection, and the proposed method is tested on this dataset. The experimental results show that the mean average precision (mAP) of the proposed method can reach 54.10%, which is higher than those of the state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七星龙渊发布了新的文献求助20
刚刚
Noah发布了新的文献求助10
3秒前
Qiao发布了新的文献求助10
3秒前
Zuo发布了新的文献求助10
3秒前
4秒前
婷婷应助Zhang采纳,获得10
4秒前
4秒前
6秒前
文艺的烧鹅完成签到,获得积分10
6秒前
6秒前
少年与梦完成签到 ,获得积分10
7秒前
9秒前
9秒前
莫里亚蒂发布了新的文献求助10
9秒前
怀火完成签到,获得积分20
10秒前
不鸭完成签到 ,获得积分10
10秒前
海森堡发布了新的文献求助10
10秒前
小糖完成签到 ,获得积分10
12秒前
褪山海发布了新的文献求助50
14秒前
123完成签到 ,获得积分10
16秒前
wangrong完成签到 ,获得积分10
17秒前
18秒前
自信向梦完成签到,获得积分10
20秒前
21秒前
七星龙渊完成签到,获得积分10
21秒前
24秒前
英姑应助追寻的依柔采纳,获得10
24秒前
Doc邓爱科研完成签到,获得积分10
24秒前
烟花应助liuqidong采纳,获得10
25秒前
木木发布了新的文献求助10
26秒前
Owen应助鲤鱼凛采纳,获得20
29秒前
30秒前
無無发布了新的文献求助30
33秒前
33秒前
34秒前
东莨菪碱完成签到,获得积分20
34秒前
AAA完成签到,获得积分10
36秒前
善学以致用应助Keycy采纳,获得10
36秒前
37秒前
DukeTao完成签到,获得积分10
40秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164337
求助须知:如何正确求助?哪些是违规求助? 2815164
关于积分的说明 7907823
捐赠科研通 2474743
什么是DOI,文献DOI怎么找? 1317626
科研通“疑难数据库(出版商)”最低求助积分说明 631898
版权声明 602234