Causal knowledge graph construction and evaluation for clinical decision support of diabetic nephropathy

计算机科学 临床决策支持系统 图形 数据挖掘 知识抽取 机器学习 人工智能 决策支持系统 情报检索 自然语言处理 理论计算机科学
作者
Kewei Lyu,Yu Tian,Yong Shang,Tianshu Zhou,Ziyue Yang,Qianghua Liu,Xi Yao,Ping Zhang,Jianghua Chen,Jingsong Li
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:139: 104298-104298 被引量:24
标识
DOI:10.1016/j.jbi.2023.104298
摘要

Many important clinical decisions require causal knowledge (CK) to take action. Although many causal knowledge bases for medicine have been constructed, a comprehensive evaluation based on real-world data and methods for handling potential knowledge noise are still lacking. The objectives of our study are threefold: (1) propose a framework for the construction of a large-scale and high-quality causal knowledge graph (CKG); (2) design the methods for knowledge noise reduction to improve the quality of the CKG; (3) evaluate the knowledge completeness and accuracy of the CKG using real-world data. We extracted causal triples from three knowledge sources (SemMedDB, UpToDate and Churchill's Pocketbook of Differential Diagnosis) based on rule methods and language models, performed ontological encoding, and then designed semantic modeling between electronic health record (EHR) data and the CKG to complete knowledge instantiation. We proposed two graph pruning strategies (co-occurrence ratio and causality ratio) to reduce the potential noise introduced by SemMedDB. Finally, the evaluation was carried out by taking the diagnostic decision support (DDS) of diabetic nephropathy (DN) as a real-world case. The data originated from a Chinese hospital EHR system from October 2010 to October 2020. The knowledge completeness and accuracy of the CKG were evaluated based on three state-of-the-art embedding methods (R-GCN, MHGRN and MedPath), the annotated clinical text and the expert review, respectively. This graph included 153,289 concepts and 1,719,968 causal triples. A total of 1427 inpatient data were used for evaluation. Better results were achieved by combining three knowledge sources than using only SemMedDB (three models: area under the receiver operating characteristic curve (AUC): p < 0.01, F1: p < 0.01), and the graph covered 93.9 % of the causal relations between diseases and diagnostic evidence recorded in clinical text. Causal relations played a vital role in all relations related to disease progression for DDS of DN (three models: AUC: p > 0.05, F1: p > 0.05), and after pruning, the knowledge accuracy of the CKG was significantly improved (three models: AUC: p < 0.01, F1: p < 0.01; expert review: average accuracy: + 5.5 %). The results demonstrated that our proposed CKG could completely and accurately capture the abstract CK under the concrete EHR data, and the pruning strategies could improve the knowledge accuracy of our CKG. The CKG has the potential to be applied to the DDS of diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陆菱柒发布了新的文献求助10
刚刚
娃哈哈发布了新的文献求助10
2秒前
爸爸_爸爸_帮帮我完成签到,获得积分20
2秒前
4秒前
深情安青应助vsbsjj采纳,获得10
5秒前
boging完成签到,获得积分10
5秒前
7秒前
7秒前
正义的伙伴完成签到,获得积分10
8秒前
文艺醉波发布了新的文献求助10
9秒前
陆菱柒完成签到,获得积分10
10秒前
10秒前
Kannan发布了新的文献求助10
10秒前
lavender发布了新的文献求助10
11秒前
曾泳钧完成签到,获得积分10
11秒前
小情绪发布了新的文献求助10
11秒前
Frank发布了新的文献求助30
11秒前
12秒前
13秒前
111完成签到,获得积分10
15秒前
希希发布了新的文献求助10
15秒前
从容的钢铁侠完成签到,获得积分20
17秒前
在水一方应助lijiauyi1994采纳,获得10
17秒前
多多发SCI发布了新的文献求助30
17秒前
量子星尘发布了新的文献求助10
18秒前
小小发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
英姑应助vsbsjj采纳,获得10
21秒前
chong0919完成签到,获得积分10
21秒前
memo应助默默的巧蕊采纳,获得10
22秒前
24秒前
26秒前
端庄的友瑶完成签到,获得积分10
27秒前
29秒前
十二完成签到,获得积分10
30秒前
30秒前
30秒前
闪999发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425403
求助须知:如何正确求助?哪些是违规求助? 4539499
关于积分的说明 14168184
捐赠科研通 4457031
什么是DOI,文献DOI怎么找? 2444414
邀请新用户注册赠送积分活动 1435321
关于科研通互助平台的介绍 1412740