Causal knowledge graph construction and evaluation for clinical decision support of diabetic nephropathy

计算机科学 临床决策支持系统 图形 数据挖掘 知识抽取 机器学习 人工智能 决策支持系统 情报检索 自然语言处理 理论计算机科学
作者
Kewei Lyu,Yu Tian,Yong Shang,Tianshu Zhou,Ziyue Yang,Qianghua Liu,Xi Yao,Ping Zhang,Jianghua Chen,Jingsong Li
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:139: 104298-104298 被引量:24
标识
DOI:10.1016/j.jbi.2023.104298
摘要

Many important clinical decisions require causal knowledge (CK) to take action. Although many causal knowledge bases for medicine have been constructed, a comprehensive evaluation based on real-world data and methods for handling potential knowledge noise are still lacking. The objectives of our study are threefold: (1) propose a framework for the construction of a large-scale and high-quality causal knowledge graph (CKG); (2) design the methods for knowledge noise reduction to improve the quality of the CKG; (3) evaluate the knowledge completeness and accuracy of the CKG using real-world data. We extracted causal triples from three knowledge sources (SemMedDB, UpToDate and Churchill's Pocketbook of Differential Diagnosis) based on rule methods and language models, performed ontological encoding, and then designed semantic modeling between electronic health record (EHR) data and the CKG to complete knowledge instantiation. We proposed two graph pruning strategies (co-occurrence ratio and causality ratio) to reduce the potential noise introduced by SemMedDB. Finally, the evaluation was carried out by taking the diagnostic decision support (DDS) of diabetic nephropathy (DN) as a real-world case. The data originated from a Chinese hospital EHR system from October 2010 to October 2020. The knowledge completeness and accuracy of the CKG were evaluated based on three state-of-the-art embedding methods (R-GCN, MHGRN and MedPath), the annotated clinical text and the expert review, respectively. This graph included 153,289 concepts and 1,719,968 causal triples. A total of 1427 inpatient data were used for evaluation. Better results were achieved by combining three knowledge sources than using only SemMedDB (three models: area under the receiver operating characteristic curve (AUC): p < 0.01, F1: p < 0.01), and the graph covered 93.9 % of the causal relations between diseases and diagnostic evidence recorded in clinical text. Causal relations played a vital role in all relations related to disease progression for DDS of DN (three models: AUC: p > 0.05, F1: p > 0.05), and after pruning, the knowledge accuracy of the CKG was significantly improved (three models: AUC: p < 0.01, F1: p < 0.01; expert review: average accuracy: + 5.5 %). The results demonstrated that our proposed CKG could completely and accurately capture the abstract CK under the concrete EHR data, and the pruning strategies could improve the knowledge accuracy of our CKG. The CKG has the potential to be applied to the DDS of diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
111发布了新的文献求助10
1秒前
细心蚂蚁完成签到,获得积分10
2秒前
PSJ完成签到,获得积分10
2秒前
传统的小海豚完成签到,获得积分10
2秒前
genomed应助可靠吐司采纳,获得10
2秒前
chen发布了新的文献求助10
3秒前
zcbb完成签到,获得积分10
3秒前
4秒前
Gzdaigzn完成签到,获得积分10
4秒前
李银锋发布了新的文献求助10
4秒前
HHHH完成签到,获得积分10
4秒前
ktssly发布了新的文献求助10
4秒前
5秒前
cc发布了新的文献求助10
5秒前
yyy完成签到,获得积分10
5秒前
6秒前
cryjslong发布了新的文献求助10
7秒前
周小笛完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
慕青应助氼乚采纳,获得10
10秒前
hyx发布了新的文献求助10
10秒前
斯文败类应助whisky采纳,获得10
10秒前
熄熄完成签到 ,获得积分10
10秒前
李银锋完成签到,获得积分10
10秒前
小白完成签到,获得积分10
11秒前
夜之叶发布了新的文献求助20
11秒前
yyy发布了新的文献求助10
12秒前
阑楚完成签到,获得积分20
13秒前
善学以致用应助苏苏采纳,获得10
13秒前
13秒前
古尔雅发布了新的文献求助10
14秒前
能干智宸完成签到,获得积分10
14秒前
banlu发布了新的文献求助10
14秒前
15秒前
Lucas应助HJJHJH采纳,获得10
16秒前
Hey关闭了Hey文献求助
18秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442780
求助须知:如何正确求助?哪些是违规求助? 4552892
关于积分的说明 14239536
捐赠科研通 4474264
什么是DOI,文献DOI怎么找? 2451974
邀请新用户注册赠送积分活动 1442887
关于科研通互助平台的介绍 1418632