Causal knowledge graph construction and evaluation for clinical decision support of diabetic nephropathy

计算机科学 临床决策支持系统 图形 数据挖掘 知识抽取 机器学习 人工智能 决策支持系统 情报检索 自然语言处理 理论计算机科学
作者
Kewei Lyu,Yu Tian,Yong Shang,Tianshu Zhou,Ziyue Yang,Qianghua Liu,Xi Yao,Ping Zhang,Jianghua Chen,Jingsong Li
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:139: 104298-104298 被引量:24
标识
DOI:10.1016/j.jbi.2023.104298
摘要

Many important clinical decisions require causal knowledge (CK) to take action. Although many causal knowledge bases for medicine have been constructed, a comprehensive evaluation based on real-world data and methods for handling potential knowledge noise are still lacking. The objectives of our study are threefold: (1) propose a framework for the construction of a large-scale and high-quality causal knowledge graph (CKG); (2) design the methods for knowledge noise reduction to improve the quality of the CKG; (3) evaluate the knowledge completeness and accuracy of the CKG using real-world data. We extracted causal triples from three knowledge sources (SemMedDB, UpToDate and Churchill's Pocketbook of Differential Diagnosis) based on rule methods and language models, performed ontological encoding, and then designed semantic modeling between electronic health record (EHR) data and the CKG to complete knowledge instantiation. We proposed two graph pruning strategies (co-occurrence ratio and causality ratio) to reduce the potential noise introduced by SemMedDB. Finally, the evaluation was carried out by taking the diagnostic decision support (DDS) of diabetic nephropathy (DN) as a real-world case. The data originated from a Chinese hospital EHR system from October 2010 to October 2020. The knowledge completeness and accuracy of the CKG were evaluated based on three state-of-the-art embedding methods (R-GCN, MHGRN and MedPath), the annotated clinical text and the expert review, respectively. This graph included 153,289 concepts and 1,719,968 causal triples. A total of 1427 inpatient data were used for evaluation. Better results were achieved by combining three knowledge sources than using only SemMedDB (three models: area under the receiver operating characteristic curve (AUC): p < 0.01, F1: p < 0.01), and the graph covered 93.9 % of the causal relations between diseases and diagnostic evidence recorded in clinical text. Causal relations played a vital role in all relations related to disease progression for DDS of DN (three models: AUC: p > 0.05, F1: p > 0.05), and after pruning, the knowledge accuracy of the CKG was significantly improved (three models: AUC: p < 0.01, F1: p < 0.01; expert review: average accuracy: + 5.5 %). The results demonstrated that our proposed CKG could completely and accurately capture the abstract CK under the concrete EHR data, and the pruning strategies could improve the knowledge accuracy of our CKG. The CKG has the potential to be applied to the DDS of diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
852应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
8R60d8应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
斧王应助科研通管家采纳,获得10
2秒前
8R60d8应助科研通管家采纳,获得10
2秒前
8R60d8应助科研通管家采纳,获得10
2秒前
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
3秒前
李爱国应助lll采纳,获得10
3秒前
哥哥喜欢格格完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
5秒前
8秒前
bingyv发布了新的文献求助10
10秒前
菠萝披萨完成签到,获得积分10
10秒前
10秒前
黄萧雨发布了新的文献求助10
10秒前
10秒前
情怀应助背后妙旋采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
星辰大海应助Reginannnn采纳,获得10
15秒前
16秒前
Akim应助dmq采纳,获得10
20秒前
20秒前
20秒前
含蓄的采白完成签到,获得积分20
21秒前
ypyue完成签到,获得积分10
22秒前
23秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449302
求助须知:如何正确求助?哪些是违规求助? 4557480
关于积分的说明 14263669
捐赠科研通 4480533
什么是DOI,文献DOI怎么找? 2454467
邀请新用户注册赠送积分活动 1445212
关于科研通互助平台的介绍 1420986