亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Causal knowledge graph construction and evaluation for clinical decision support of diabetic nephropathy

计算机科学 临床决策支持系统 图形 数据挖掘 知识抽取 机器学习 人工智能 决策支持系统 情报检索 自然语言处理 理论计算机科学
作者
Kewei Lyu,Yu Tian,Yong Shang,Tianshu Zhou,Ziyue Yang,Qianghua Liu,Xi Yao,Ping Zhang,Jianghua Chen,Jingsong Li
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:139: 104298-104298 被引量:24
标识
DOI:10.1016/j.jbi.2023.104298
摘要

Many important clinical decisions require causal knowledge (CK) to take action. Although many causal knowledge bases for medicine have been constructed, a comprehensive evaluation based on real-world data and methods for handling potential knowledge noise are still lacking. The objectives of our study are threefold: (1) propose a framework for the construction of a large-scale and high-quality causal knowledge graph (CKG); (2) design the methods for knowledge noise reduction to improve the quality of the CKG; (3) evaluate the knowledge completeness and accuracy of the CKG using real-world data. We extracted causal triples from three knowledge sources (SemMedDB, UpToDate and Churchill's Pocketbook of Differential Diagnosis) based on rule methods and language models, performed ontological encoding, and then designed semantic modeling between electronic health record (EHR) data and the CKG to complete knowledge instantiation. We proposed two graph pruning strategies (co-occurrence ratio and causality ratio) to reduce the potential noise introduced by SemMedDB. Finally, the evaluation was carried out by taking the diagnostic decision support (DDS) of diabetic nephropathy (DN) as a real-world case. The data originated from a Chinese hospital EHR system from October 2010 to October 2020. The knowledge completeness and accuracy of the CKG were evaluated based on three state-of-the-art embedding methods (R-GCN, MHGRN and MedPath), the annotated clinical text and the expert review, respectively. This graph included 153,289 concepts and 1,719,968 causal triples. A total of 1427 inpatient data were used for evaluation. Better results were achieved by combining three knowledge sources than using only SemMedDB (three models: area under the receiver operating characteristic curve (AUC): p < 0.01, F1: p < 0.01), and the graph covered 93.9 % of the causal relations between diseases and diagnostic evidence recorded in clinical text. Causal relations played a vital role in all relations related to disease progression for DDS of DN (three models: AUC: p > 0.05, F1: p > 0.05), and after pruning, the knowledge accuracy of the CKG was significantly improved (three models: AUC: p < 0.01, F1: p < 0.01; expert review: average accuracy: + 5.5 %). The results demonstrated that our proposed CKG could completely and accurately capture the abstract CK under the concrete EHR data, and the pruning strategies could improve the knowledge accuracy of our CKG. The CKG has the potential to be applied to the DDS of diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoleihu完成签到 ,获得积分10
刚刚
andrele发布了新的文献求助10
4秒前
5秒前
Lucas应助safari采纳,获得10
6秒前
sun发布了新的文献求助10
28秒前
mmmmm完成签到,获得积分10
29秒前
45秒前
RR发布了新的文献求助10
50秒前
量子星尘发布了新的文献求助150
54秒前
RR完成签到,获得积分10
1分钟前
Criminology34应助andrele采纳,获得10
1分钟前
CodeCraft应助Marco_hxkq采纳,获得10
1分钟前
吉安娜完成签到 ,获得积分10
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
GingerF应助科研通管家采纳,获得100
1分钟前
1分钟前
Marco_hxkq发布了新的文献求助10
1分钟前
1分钟前
正直的友容完成签到,获得积分10
2分钟前
2分钟前
2分钟前
共享精神应助islazheng采纳,获得100
2分钟前
wcy发布了新的文献求助10
2分钟前
wcy完成签到,获得积分20
2分钟前
JamesPei应助乔一一采纳,获得10
2分钟前
柚子叶滋滋完成签到 ,获得积分10
2分钟前
呆萌冰彤完成签到 ,获得积分10
3分钟前
脑洞疼应助sun采纳,获得10
3分钟前
3分钟前
sun发布了新的文献求助10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
wop111应助科研通管家采纳,获得20
3分钟前
3分钟前
Hello应助自由的32采纳,获得10
3分钟前
乔一一发布了新的文献求助10
4分钟前
4分钟前
banbieshenlu完成签到,获得积分10
4分钟前
自由的32完成签到,获得积分10
4分钟前
彭于晏应助愉博采纳,获得10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952327
求助须知:如何正确求助?哪些是违规求助? 4215067
关于积分的说明 13110992
捐赠科研通 3996934
什么是DOI,文献DOI怎么找? 2187720
邀请新用户注册赠送积分活动 1202971
关于科研通互助平台的介绍 1115712