Seismic damage identification of high arch dams based on an unsupervised deep learning approach

稳健性(进化) 计算机科学 拱坝 拱门 降噪 结构健康监测 人工智能 噪音(视频) 鉴定(生物学) 模式识别(心理学) 机器学习 数据挖掘 工程类 结构工程 植物 生物 生物化学 化学 图像(数学) 基因
作者
Xiangyu Cao,Liang Chen,Jianyun Chen,Jing Li,Wenyan Lü,Haixiang Liu,KE Min-yong,Yunqing Tang
出处
期刊:Soil Dynamics and Earthquake Engineering [Elsevier BV]
卷期号:168: 107834-107834 被引量:7
标识
DOI:10.1016/j.soildyn.2023.107834
摘要

In actual engineering scenarios of arch dams, the incompleteness and nonstationarity of dynamic monitoring signals limit the accurate cognition of the health state. The effectiveness and robustness of damage characteristics in complex environments restrict the practical application of damage diagnosis theory. In this study, guided by the direct extraction of damage sensitivity features from the acceleration response signals of the arch dam, a seismic damage identification approach of high arch dams based on unsupervised learning is developed. Aiming at the problems of low measurement accuracy and poor identification robustness in the existing artificially designed damage-sensitive features, a denoising contractual sparse deep auto-encoder (DCS-DAE) model is proposed by exploring the mapping relationship between monitoring data and the structural state. This model integrates the advantages of denoising auto-encoder, compressive auto-encoder, and sparse auto-encoder. On this basis, based on the principle of reconstruction error and small probability, combined with box-plot and WKNN algorithm, a damage identification framework based on DCS-DAE is constructed. The effectiveness and noise resistance of the proposed method are verified by an extremely high arch dam. The results demonstrate that the damage identification framework based on multi-objective DCS-DAE constructed in this paper only requires the vibration information of the structure in the intact scenario, which provides a solution with higher stability and robustness for the seismic damage identification of high arch dams under strong noise pollution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
草拟大坝完成签到 ,获得积分0
2秒前
一个头两个大完成签到,获得积分10
4秒前
4秒前
JerryZ发布了新的文献求助10
6秒前
7秒前
FashionBoy应助好久不见采纳,获得10
8秒前
9秒前
WY完成签到 ,获得积分10
10秒前
11秒前
0015发布了新的文献求助10
11秒前
13秒前
14秒前
剑指天涯完成签到,获得积分10
15秒前
15秒前
背后大白发布了新的文献求助10
17秒前
嘉仔发布了新的文献求助10
18秒前
无花果应助JerryZ采纳,获得10
18秒前
hchen发布了新的文献求助10
19秒前
hahaha完成签到,获得积分20
20秒前
苍蓝寸心完成签到,获得积分10
20秒前
21秒前
yiyi发布了新的文献求助10
22秒前
0015发布了新的文献求助10
22秒前
易安发布了新的文献求助10
23秒前
24秒前
苍蓝寸心发布了新的文献求助10
26秒前
汉堡包应助秦路采纳,获得10
28秒前
善学以致用应助0015采纳,获得10
28秒前
29秒前
悦耳的谷芹完成签到,获得积分10
31秒前
31秒前
carryxu完成签到,获得积分10
32秒前
伶俐百川完成签到,获得积分10
33秒前
33秒前
脑洞疼应助liuzengzhang666采纳,获得10
34秒前
小宋发布了新的文献求助10
35秒前
35秒前
35秒前
Chaos发布了新的文献求助10
36秒前
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959791
求助须知:如何正确求助?哪些是违规求助? 3506016
关于积分的说明 11127539
捐赠科研通 3237976
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871758
科研通“疑难数据库(出版商)”最低求助积分说明 803019