NeuPot: A Neural Network-Based Honeypot for Detecting Cyber Threats in Industrial Control Systems

蜜罐 Modbus协议 计算机安全 计算机科学 工业控制系统 互动性 方案(数学) 信息物理系统 网络威胁 网络安全 计算机网络 控制(管理) 通信协议 人工智能 操作系统 数学分析 数学
作者
Yao Shan,Yu Yao,Tong Zhao,Wei Yang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (10): 10512-10522 被引量:13
标识
DOI:10.1109/tii.2023.3240739
摘要

Honeypots have proven to be an effective defense method for industrial control systems (ICSs). However, as attacker skills become more sophisticated, it becomes increasingly difficult to develop honeypots that can effectively recognize and respond to such attacks. In this article, we propose a neural network-based ICS honeypot scheme named NeuPot that improves security from two aspects: 1) honeypot interaction; and 2) cyber threats detection capability. NeuPot can respond to attacker requests depending on a specific industrial scenario without constant communication with the ICS and detect malicious traffic. To create this honeypot scheme, a new seq2seq time-series forecast model guided by Huber loss is designed to simulate the long-term changes in actual ICS physical processes. Second, a Modbus honeypot framework is created to react to changes in these ICS physical processes in their interactions with attackers and to capture various cyber threats against the ICS. Further, a novel loss function for industrial protocol-level malicious traffic detection is devised to identify known and unknown threats. According to our experiments, the proposed honeypot scheme is highly effective and outperforms state-of-the-art schemes in terms of interactivity and in detecting cyber threats.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助心灵手巧采纳,获得10
1秒前
姜姜戈戈完成签到 ,获得积分10
2秒前
NexusExplorer应助....采纳,获得10
2秒前
楠兮完成签到,获得积分10
2秒前
再慕完成签到,获得积分10
3秒前
思源应助酷盖采纳,获得10
4秒前
4秒前
Fjj完成签到,获得积分10
4秒前
4秒前
4秒前
英姑应助嘎嘣脆采纳,获得10
5秒前
Shale完成签到,获得积分10
5秒前
妮妮完成签到 ,获得积分10
5秒前
咎星完成签到,获得积分10
5秒前
6秒前
Lijia_YAO发布了新的文献求助10
6秒前
OK完成签到,获得积分10
6秒前
6秒前
友好慕卉发布了新的文献求助10
7秒前
lxl发布了新的文献求助10
7秒前
Hello应助在望采纳,获得10
7秒前
yeti完成签到,获得积分10
7秒前
Surge完成签到,获得积分10
7秒前
roselau完成签到,获得积分10
7秒前
liuting完成签到,获得积分10
8秒前
8秒前
8秒前
Owen应助tangh采纳,获得10
8秒前
朱建强完成签到,获得积分10
9秒前
奥特超曼完成签到,获得积分0
9秒前
鸣笛应助ziying126采纳,获得10
9秒前
科研通AI2S应助蛋黄酥很酥采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
fd完成签到,获得积分10
10秒前
Glume发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
2403danlu发布了新的文献求助10
11秒前
郑利兵发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572570
求助须知:如何正确求助?哪些是违规求助? 3993286
关于积分的说明 12361873
捐赠科研通 3666367
什么是DOI,文献DOI怎么找? 2020752
邀请新用户注册赠送积分活动 1054961
科研通“疑难数据库(出版商)”最低求助积分说明 942355