A New Federated Scheduling Algorithm for Arbitrary-Deadline DAG Tasks

计算机科学 有向无环图 调度(生产过程) 并行计算 固定优先级先发制人调度 动态优先级调度 分布式计算 算法 最早截止时间优先安排 公平份额计划 两级调度 单调速率调度 地铁列车时刻表 数学优化 操作系统 数学
作者
Fei Guan,Long Peng,Jiaqing Qiao
出处
期刊:IEEE Transactions on Computers [Institute of Electrical and Electronics Engineers]
卷期号:72 (8): 2264-2277 被引量:7
标识
DOI:10.1109/tc.2023.3244632
摘要

A parallel task can always be modelled as a directed acyclic graph (DAG), where sequential instruction blocks are modelled as vertices and data dependencies or resource constraints are modelled as edges. We propose a new federated scheduling algorithm for arbitrary-deadline sporadic DAG tasks, assuming that the exact structures of DAG tasks are unknown before runtime. Federated scheduling algorithms are a class of algorithms that can efficiently schedule DAG tasks by assigning several processors exclusively to each task. Existing studies have shown the advantages of federated scheduling, which include increasing the analytical schedulability and minimising the scheduling overhead. We are particularly focused on the scheduling of any task with a deadline longer than its release period; in this case, multiple jobs generated by the task could run concurrently. For such tasks, our algorithm is different from most federated scheduling algorithms in that it assigns dedicated processors to each job instead of letting jobs released by the same task share processors. The main idea is to increase the analytical schedulability by avoiding interference between jobs. The simulation results show that our algorithm outperforms existing algorithms when the exact structures of tasks are unknown before runtime.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
3秒前
4秒前
5秒前
aaaaaa发布了新的文献求助10
5秒前
5秒前
xuan完成签到,获得积分10
6秒前
兜有米发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
goodgay133发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
思源应助aaaaaa采纳,获得10
10秒前
江月年发布了新的文献求助10
11秒前
陈冲冲发布了新的文献求助10
12秒前
眰恦完成签到 ,获得积分10
12秒前
12秒前
modesty发布了新的文献求助10
12秒前
锐123发布了新的文献求助10
13秒前
桐桐应助zby2采纳,获得10
13秒前
13秒前
14秒前
子车万仇发布了新的文献求助10
15秒前
兜有米完成签到,获得积分10
15秒前
15秒前
幽默飞雪完成签到 ,获得积分10
17秒前
桐桐应助陈冲冲采纳,获得10
18秒前
画晴发布了新的文献求助20
18秒前
酷波er应助科研通管家采纳,获得10
19秒前
19秒前
研友_VZG7GZ应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
彳亍1117应助科研通管家采纳,获得10
19秒前
彳亍1117应助科研通管家采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得30
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967152
求助须知:如何正确求助?哪些是违规求助? 3512481
关于积分的说明 11163524
捐赠科研通 3247421
什么是DOI,文献DOI怎么找? 1793805
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804450