An improved burr size prediction method based on the 1D-ResNet model and transfer learning

稳健性(进化) 材料科学 残余物 废品 算法 计算机科学 生物化学 基因 化学 冶金
作者
Zijian Liu,Bingxuan Guo,Fenghe Wu,Tianjie Han,Lei Zhang
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:84: 183-197 被引量:4
标识
DOI:10.1016/j.jmapro.2022.09.060
摘要

Cutting burrs, which are common in the manufacturing process of aluminum alloy wheel hubs, can severely affect the quality of the wheel hub surface and increase the scrap rate. An accurate prediction of the cutting burr size is the basis for solving the burr problem using optimization means. However, wheel hub cutting burrs can be measured only by offline microscopy, which makes acquiring burr size samples challenging, and traditional data fitting and prediction methods perform poorly for limited number of samples. To solve this problem, this paper proposes an improved method for constructing a burr length prediction model. A constitutive model of the wheel hub material A356.2 aluminum alloy is constructed using mechanical tests. This constitutive model is applied to simulate the wheel cutting burr, and the simulation results are verified using cutting experiments. Then, a large amount of simulation is performed, and a one-dimensional residual network (1D-ResNet) is constructed and trained with the simulation data; the results show that the 1D-ResNet model has stronger stability and robustness and improved prediction accuracy compared to the traditional data processing methods. Based on the transfer learning method, the trained 1D-ResNet model is fine-tuned by using the cutting experimental data, and a burr size prediction model fusing the simulation data and the experimental data is constructed. The verification results show that the proposed method can achieve high prediction accuracy with limited number of samples, thus effectively solving the engineering problem of wheel cutting burr size prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
情怀应助甜美镜子采纳,获得10
1秒前
3秒前
KinoFreeze完成签到 ,获得积分10
4秒前
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
北城完成签到,获得积分10
7秒前
CUI发布了新的文献求助10
8秒前
cndxh发布了新的文献求助10
8秒前
10秒前
搜集达人应助Rosechanel采纳,获得10
10秒前
领导范儿应助DyG采纳,获得10
10秒前
11秒前
丫丫发布了新的文献求助10
11秒前
12秒前
13秒前
sahula完成签到,获得积分10
13秒前
李嘉睿完成签到,获得积分10
13秒前
毛毛完成签到 ,获得积分10
14秒前
俏皮短靴发布了新的文献求助10
15秒前
慕青应助凄凉山谷的风采纳,获得10
17秒前
科研通AI6应助冰冻西红柿采纳,获得10
17秒前
顾矜应助李嘉睿采纳,获得10
17秒前
赘婿应助风清扬采纳,获得10
17秒前
儒雅的夏山完成签到,获得积分10
18秒前
Joy完成签到,获得积分10
18秒前
今后应助陶醉的念之采纳,获得10
18秒前
Orange应助Tao2023采纳,获得10
18秒前
19秒前
19秒前
华仔应助cndxh采纳,获得10
19秒前
十五完成签到,获得积分10
19秒前
19秒前
高大的冰双完成签到,获得积分10
21秒前
海盗船长发布了新的文献求助10
21秒前
22秒前
focus发布了新的文献求助10
22秒前
饱满衬衫发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627241
求助须知:如何正确求助?哪些是违规求助? 4713226
关于积分的说明 14961499
捐赠科研通 4784040
什么是DOI,文献DOI怎么找? 2554754
邀请新用户注册赠送积分活动 1516304
关于科研通互助平台的介绍 1476655