An improved burr size prediction method based on the 1D-ResNet model and transfer learning

稳健性(进化) 材料科学 残余物 废品 算法 计算机科学 生物化学 基因 化学 冶金
作者
Zijian Liu,Bingxuan Guo,Fenghe Wu,Tianjie Han,Lei Zhang
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:84: 183-197 被引量:4
标识
DOI:10.1016/j.jmapro.2022.09.060
摘要

Cutting burrs, which are common in the manufacturing process of aluminum alloy wheel hubs, can severely affect the quality of the wheel hub surface and increase the scrap rate. An accurate prediction of the cutting burr size is the basis for solving the burr problem using optimization means. However, wheel hub cutting burrs can be measured only by offline microscopy, which makes acquiring burr size samples challenging, and traditional data fitting and prediction methods perform poorly for limited number of samples. To solve this problem, this paper proposes an improved method for constructing a burr length prediction model. A constitutive model of the wheel hub material A356.2 aluminum alloy is constructed using mechanical tests. This constitutive model is applied to simulate the wheel cutting burr, and the simulation results are verified using cutting experiments. Then, a large amount of simulation is performed, and a one-dimensional residual network (1D-ResNet) is constructed and trained with the simulation data; the results show that the 1D-ResNet model has stronger stability and robustness and improved prediction accuracy compared to the traditional data processing methods. Based on the transfer learning method, the trained 1D-ResNet model is fine-tuned by using the cutting experimental data, and a burr size prediction model fusing the simulation data and the experimental data is constructed. The verification results show that the proposed method can achieve high prediction accuracy with limited number of samples, thus effectively solving the engineering problem of wheel cutting burr size prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小熊座a完成签到 ,获得积分10
刚刚
bujiachong发布了新的文献求助10
1秒前
zhaokui2049发布了新的文献求助10
1秒前
科研通AI6应助浅笑成风采纳,获得10
2秒前
2秒前
大龙哥886应助周一一采纳,获得10
2秒前
如意秋柳完成签到,获得积分10
2秒前
7777777完成签到,获得积分10
3秒前
3秒前
香蕉诗蕊举报发光爆米花求助涉嫌违规
3秒前
123完成签到,获得积分10
4秒前
rwanq发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
ZeKaWa应助不吃香菜采纳,获得10
4秒前
烟花应助Runostp采纳,获得10
4秒前
4秒前
春日野猪完成签到,获得积分10
5秒前
睡觉专业户完成签到 ,获得积分10
5秒前
冷酷的乐驹关注了科研通微信公众号
5秒前
林佳一发布了新的文献求助10
6秒前
6秒前
bin发布了新的文献求助30
6秒前
FashionBoy应助满意的李玉波采纳,获得10
6秒前
寒冷的元芹完成签到,获得积分10
7秒前
张钦奎完成签到,获得积分10
7秒前
JerryZ发布了新的文献求助10
7秒前
spc68应助姜友舜采纳,获得20
8秒前
gq关注了科研通微信公众号
8秒前
风中尔蝶发布了新的文献求助10
8秒前
ym完成签到,获得积分20
9秒前
柒月发布了新的文献求助10
9秒前
诚c发布了新的文献求助10
10秒前
yehuitao发布了新的文献求助10
10秒前
所所应助bujiachong采纳,获得10
10秒前
nanami发布了新的文献求助10
10秒前
11秒前
zik应助活泼听露采纳,获得20
11秒前
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620086
求助须知:如何正确求助?哪些是违规求助? 4704553
关于积分的说明 14928430
捐赠科研通 4760801
什么是DOI,文献DOI怎么找? 2550747
邀请新用户注册赠送积分活动 1513486
关于科研通互助平台的介绍 1474498