亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An improved burr size prediction method based on the 1D-ResNet model and transfer learning

稳健性(进化) 材料科学 残余物 废品 算法 计算机科学 生物化学 基因 化学 冶金
作者
Zijian Liu,Bingxuan Guo,Fenghe Wu,Tianjie Han,Lei Zhang
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:84: 183-197 被引量:4
标识
DOI:10.1016/j.jmapro.2022.09.060
摘要

Cutting burrs, which are common in the manufacturing process of aluminum alloy wheel hubs, can severely affect the quality of the wheel hub surface and increase the scrap rate. An accurate prediction of the cutting burr size is the basis for solving the burr problem using optimization means. However, wheel hub cutting burrs can be measured only by offline microscopy, which makes acquiring burr size samples challenging, and traditional data fitting and prediction methods perform poorly for limited number of samples. To solve this problem, this paper proposes an improved method for constructing a burr length prediction model. A constitutive model of the wheel hub material A356.2 aluminum alloy is constructed using mechanical tests. This constitutive model is applied to simulate the wheel cutting burr, and the simulation results are verified using cutting experiments. Then, a large amount of simulation is performed, and a one-dimensional residual network (1D-ResNet) is constructed and trained with the simulation data; the results show that the 1D-ResNet model has stronger stability and robustness and improved prediction accuracy compared to the traditional data processing methods. Based on the transfer learning method, the trained 1D-ResNet model is fine-tuned by using the cutting experimental data, and a burr size prediction model fusing the simulation data and the experimental data is constructed. The verification results show that the proposed method can achieve high prediction accuracy with limited number of samples, thus effectively solving the engineering problem of wheel cutting burr size prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温童完成签到 ,获得积分10
刚刚
wang5945完成签到 ,获得积分10
1秒前
洁净的千凡完成签到,获得积分20
4秒前
8秒前
月亮门完成签到 ,获得积分10
9秒前
研友_VZG7GZ应助dlfg采纳,获得10
10秒前
疯狂喵完成签到 ,获得积分10
11秒前
hu970发布了新的文献求助10
12秒前
英勇羿发布了新的文献求助10
13秒前
14秒前
14秒前
19秒前
吴洲凤发布了新的文献求助10
19秒前
19秒前
allen完成签到,获得积分10
23秒前
23秒前
大方的契发布了新的文献求助10
24秒前
25秒前
26秒前
汉堡包应助内啡呔采纳,获得10
29秒前
高贵土豆发布了新的文献求助10
31秒前
33秒前
JamesPei应助hzk采纳,获得10
34秒前
远方完成签到,获得积分10
40秒前
42秒前
伍声痕完成签到,获得积分10
42秒前
hahahan完成签到 ,获得积分10
46秒前
47秒前
49秒前
50秒前
哈哈哈哈哈关注了科研通微信公众号
52秒前
dlfg发布了新的文献求助10
53秒前
55秒前
dlfg完成签到,获得积分10
58秒前
大方的契发布了新的文献求助10
58秒前
史前巨怪完成签到,获得积分10
58秒前
内啡呔发布了新的文献求助10
1分钟前
1分钟前
1分钟前
hzk发布了新的文献求助10
1分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454727
求助须知:如何正确求助?哪些是违规求助? 4562104
关于积分的说明 14284714
捐赠科研通 4485945
什么是DOI,文献DOI怎么找? 2457157
邀请新用户注册赠送积分活动 1447737
关于科研通互助平台的介绍 1422973