An improved burr size prediction method based on the 1D-ResNet model and transfer learning

稳健性(进化) 材料科学 残余物 废品 算法 计算机科学 生物化学 化学 冶金 基因
作者
Zijian Liu,Baosu Guo,Fenghe Wu,Tianjie Han,Lei Zhang
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:84: 183-197 被引量:28
标识
DOI:10.1016/j.jmapro.2022.09.060
摘要

Cutting burrs, which are common in the manufacturing process of aluminum alloy wheel hubs, can severely affect the quality of the wheel hub surface and increase the scrap rate. An accurate prediction of the cutting burr size is the basis for solving the burr problem using optimization means. However, wheel hub cutting burrs can be measured only by offline microscopy, which makes acquiring burr size samples challenging, and traditional data fitting and prediction methods perform poorly for limited number of samples. To solve this problem, this paper proposes an improved method for constructing a burr length prediction model. A constitutive model of the wheel hub material A356.2 aluminum alloy is constructed using mechanical tests. This constitutive model is applied to simulate the wheel cutting burr, and the simulation results are verified using cutting experiments. Then, a large amount of simulation is performed, and a one-dimensional residual network (1D-ResNet) is constructed and trained with the simulation data; the results show that the 1D-ResNet model has stronger stability and robustness and improved prediction accuracy compared to the traditional data processing methods. Based on the transfer learning method, the trained 1D-ResNet model is fine-tuned by using the cutting experimental data, and a burr size prediction model fusing the simulation data and the experimental data is constructed. The verification results show that the proposed method can achieve high prediction accuracy with limited number of samples, thus effectively solving the engineering problem of wheel cutting burr size prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SSS发布了新的文献求助30
1秒前
hjs完成签到,获得积分10
1秒前
2秒前
占那个发布了新的文献求助10
4秒前
shanp发布了新的文献求助10
4秒前
5秒前
三三来此完成签到,获得积分20
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
元狩完成签到 ,获得积分10
11秒前
淡淡发布了新的文献求助10
12秒前
Ava应助仲谋采纳,获得10
13秒前
刘文静完成签到,获得积分10
14秒前
yznfly应助某强采纳,获得80
14秒前
我是老大应助TT采纳,获得10
15秒前
田様应助科研牛马徐某人采纳,获得10
15秒前
17秒前
17秒前
聪明的雁凡完成签到,获得积分10
18秒前
may完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
绿鹅完成签到,获得积分10
20秒前
21秒前
21秒前
张宁宁发布了新的文献求助20
21秒前
may发布了新的文献求助10
22秒前
23秒前
23秒前
顺利的妖妖完成签到 ,获得积分10
24秒前
M王发布了新的文献求助10
24秒前
24秒前
67发布了新的文献求助10
26秒前
三三来此发布了新的文献求助10
26秒前
我是老大应助Ernest采纳,获得10
27秒前
27秒前
Hs发布了新的文献求助10
27秒前
灵巧晓亦发布了新的文献求助10
27秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679587
求助须知:如何正确求助?哪些是违规求助? 4991903
关于积分的说明 15170108
捐赠科研通 4839414
什么是DOI,文献DOI怎么找? 2593318
邀请新用户注册赠送积分活动 1546447
关于科研通互助平台的介绍 1504572