An improved burr size prediction method based on the 1D-ResNet model and transfer learning

稳健性(进化) 材料科学 残余物 废品 算法 计算机科学 生物化学 基因 化学 冶金
作者
Zijian Liu,Bingxuan Guo,Fenghe Wu,Tianjie Han,Lei Zhang
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:84: 183-197 被引量:4
标识
DOI:10.1016/j.jmapro.2022.09.060
摘要

Cutting burrs, which are common in the manufacturing process of aluminum alloy wheel hubs, can severely affect the quality of the wheel hub surface and increase the scrap rate. An accurate prediction of the cutting burr size is the basis for solving the burr problem using optimization means. However, wheel hub cutting burrs can be measured only by offline microscopy, which makes acquiring burr size samples challenging, and traditional data fitting and prediction methods perform poorly for limited number of samples. To solve this problem, this paper proposes an improved method for constructing a burr length prediction model. A constitutive model of the wheel hub material A356.2 aluminum alloy is constructed using mechanical tests. This constitutive model is applied to simulate the wheel cutting burr, and the simulation results are verified using cutting experiments. Then, a large amount of simulation is performed, and a one-dimensional residual network (1D-ResNet) is constructed and trained with the simulation data; the results show that the 1D-ResNet model has stronger stability and robustness and improved prediction accuracy compared to the traditional data processing methods. Based on the transfer learning method, the trained 1D-ResNet model is fine-tuned by using the cutting experimental data, and a burr size prediction model fusing the simulation data and the experimental data is constructed. The verification results show that the proposed method can achieve high prediction accuracy with limited number of samples, thus effectively solving the engineering problem of wheel cutting burr size prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安静柚子发布了新的文献求助30
1秒前
星星完成签到,获得积分10
1秒前
1秒前
1秒前
LixiaDu完成签到,获得积分20
1秒前
evilcloth关注了科研通微信公众号
1秒前
fionadong发布了新的文献求助10
2秒前
不安夜玉发布了新的文献求助10
2秒前
sct发布了新的文献求助10
3秒前
syunlam发布了新的文献求助10
3秒前
Chloro发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
ding应助photodetectors采纳,获得10
6秒前
6秒前
SciGPT应助Fami采纳,获得10
7秒前
又是许想想完成签到,获得积分10
7秒前
失眠依珊发布了新的文献求助10
8秒前
8秒前
9秒前
lyy发布了新的文献求助10
9秒前
Orange应助syunlam采纳,获得10
9秒前
中原第一深情完成签到,获得积分10
10秒前
Chloro完成签到,获得积分20
12秒前
13秒前
13秒前
HYX发布了新的文献求助10
13秒前
胖大墨和黑大朵完成签到,获得积分10
14秒前
小羊打嗝发布了新的文献求助10
14秒前
15秒前
曲聋五发布了新的文献求助10
15秒前
15秒前
CodeCraft应助小铭同学采纳,获得10
15秒前
16秒前
17秒前
17秒前
Julia发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642830
求助须知:如何正确求助?哪些是违规求助? 4759998
关于积分的说明 15019132
捐赠科研通 4801370
什么是DOI,文献DOI怎么找? 2566676
邀请新用户注册赠送积分活动 1524579
关于科研通互助平台的介绍 1484206