An improved burr size prediction method based on the 1D-ResNet model and transfer learning

稳健性(进化) 材料科学 残余物 废品 算法 计算机科学 生物化学 基因 化学 冶金
作者
Zijian Liu,Bingxuan Guo,Fenghe Wu,Tianjie Han,Lei Zhang
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:84: 183-197 被引量:4
标识
DOI:10.1016/j.jmapro.2022.09.060
摘要

Cutting burrs, which are common in the manufacturing process of aluminum alloy wheel hubs, can severely affect the quality of the wheel hub surface and increase the scrap rate. An accurate prediction of the cutting burr size is the basis for solving the burr problem using optimization means. However, wheel hub cutting burrs can be measured only by offline microscopy, which makes acquiring burr size samples challenging, and traditional data fitting and prediction methods perform poorly for limited number of samples. To solve this problem, this paper proposes an improved method for constructing a burr length prediction model. A constitutive model of the wheel hub material A356.2 aluminum alloy is constructed using mechanical tests. This constitutive model is applied to simulate the wheel cutting burr, and the simulation results are verified using cutting experiments. Then, a large amount of simulation is performed, and a one-dimensional residual network (1D-ResNet) is constructed and trained with the simulation data; the results show that the 1D-ResNet model has stronger stability and robustness and improved prediction accuracy compared to the traditional data processing methods. Based on the transfer learning method, the trained 1D-ResNet model is fine-tuned by using the cutting experimental data, and a burr size prediction model fusing the simulation data and the experimental data is constructed. The verification results show that the proposed method can achieve high prediction accuracy with limited number of samples, thus effectively solving the engineering problem of wheel cutting burr size prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
#include完成签到,获得积分10
3秒前
4秒前
杨白秋完成签到,获得积分10
4秒前
ly2162212311完成签到,获得积分10
6秒前
7秒前
慕青应助长孙归尘采纳,获得10
8秒前
9秒前
踏实的道消完成签到,获得积分10
9秒前
小高完成签到,获得积分10
10秒前
三重积分咖啡完成签到 ,获得积分10
11秒前
七凌完成签到,获得积分10
11秒前
彭于晏应助清爽灰狼采纳,获得10
12秒前
12秒前
12秒前
oceanao应助小鱼爱吃猫采纳,获得10
13秒前
13秒前
13秒前
cch完成签到,获得积分10
14秒前
等待完成签到,获得积分10
14秒前
晴云发布了新的文献求助10
14秒前
15秒前
青尘枫叶发布了新的文献求助10
16秒前
李健应助lll采纳,获得10
17秒前
心态完成签到,获得积分10
17秒前
长孙归尘发布了新的文献求助10
19秒前
葡萄成熟发布了新的文献求助10
19秒前
21秒前
Jacky完成签到,获得积分10
21秒前
xiaojcom应助七凌采纳,获得10
21秒前
22秒前
咸鱼好翻身完成签到,获得积分10
22秒前
oceanao应助青尘枫叶采纳,获得10
22秒前
科研通AI2S应助跳跃的雨兰采纳,获得10
23秒前
23秒前
成就宛完成签到,获得积分10
24秒前
24秒前
xh96发布了新的文献求助10
26秒前
AU完成签到,获得积分10
26秒前
27秒前
赘婿应助晴云采纳,获得10
27秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163395
求助须知:如何正确求助?哪些是违规求助? 2814263
关于积分的说明 7904141
捐赠科研通 2473792
什么是DOI,文献DOI怎么找? 1317118
科研通“疑难数据库(出版商)”最低求助积分说明 631625
版权声明 602187