An improved burr size prediction method based on the 1D-ResNet model and transfer learning

稳健性(进化) 材料科学 残余物 废品 算法 计算机科学 生物化学 基因 化学 冶金
作者
Zijian Liu,Bingxuan Guo,Fenghe Wu,Tianjie Han,Lei Zhang
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:84: 183-197 被引量:4
标识
DOI:10.1016/j.jmapro.2022.09.060
摘要

Cutting burrs, which are common in the manufacturing process of aluminum alloy wheel hubs, can severely affect the quality of the wheel hub surface and increase the scrap rate. An accurate prediction of the cutting burr size is the basis for solving the burr problem using optimization means. However, wheel hub cutting burrs can be measured only by offline microscopy, which makes acquiring burr size samples challenging, and traditional data fitting and prediction methods perform poorly for limited number of samples. To solve this problem, this paper proposes an improved method for constructing a burr length prediction model. A constitutive model of the wheel hub material A356.2 aluminum alloy is constructed using mechanical tests. This constitutive model is applied to simulate the wheel cutting burr, and the simulation results are verified using cutting experiments. Then, a large amount of simulation is performed, and a one-dimensional residual network (1D-ResNet) is constructed and trained with the simulation data; the results show that the 1D-ResNet model has stronger stability and robustness and improved prediction accuracy compared to the traditional data processing methods. Based on the transfer learning method, the trained 1D-ResNet model is fine-tuned by using the cutting experimental data, and a burr size prediction model fusing the simulation data and the experimental data is constructed. The verification results show that the proposed method can achieve high prediction accuracy with limited number of samples, thus effectively solving the engineering problem of wheel cutting burr size prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助小白采纳,获得10
刚刚
冰冰发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
爆米花应助Windsea采纳,获得10
刚刚
2秒前
Z2H完成签到,获得积分10
2秒前
依旧完成签到 ,获得积分10
2秒前
2秒前
3秒前
taotie发布了新的文献求助10
4秒前
windflake完成签到,获得积分10
4秒前
4秒前
zmin完成签到,获得积分10
4秒前
魔幻大有发布了新的文献求助10
4秒前
5秒前
LQQ发布了新的文献求助10
5秒前
FashionBoy应助WH采纳,获得10
5秒前
6秒前
ma发布了新的文献求助10
6秒前
7秒前
老迟到的醉卉完成签到,获得积分10
7秒前
7秒前
欣喜十八给欣喜十八的求助进行了留言
7秒前
wanci应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
大模型应助科研通管家采纳,获得10
8秒前
8秒前
Orange应助科研通管家采纳,获得30
8秒前
8秒前
魏映霞发布了新的文献求助10
8秒前
dy发布了新的文献求助10
9秒前
9秒前
隐形曼青应助xian林采纳,获得10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809