Robust frame-reduced structured illumination microscopy with accelerated correlation-enabled parameter estimation

稳健性(进化) 计算机科学 算法 迭代重建 图像分辨率 显微镜 像素 图像质量 人工智能 还原(数学) 计算机视觉 光学 数学 图像(数学) 物理 生物化学 基因 化学 几何学
作者
Jiaming Qian,Yu Cao,Kailong Xu,Ying Bi,Weiyi Xia,Qian Chen,Chao Zuo
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:121 (15) 被引量:15
标识
DOI:10.1063/5.0107510
摘要

Structured illumination microscopy (SIM), with the advantages of full-field imaging and low photo-damage, is one of the most well-established fluorescence super-resolution microscopy techniques that raised great interest in biological sciences. However, conventional SIM techniques generally require at least nine images for image reconstruction, and the quality of super-resolution significantly depends on high-accuracy illumination parameter estimation, which is usually computationally intense and time-consuming. To address these issues, we propose a robust seven-frame SIM reconstruction algorithm with accelerated correlation-enabled parameter estimation. First, a modulation-assigned spatial filter is employed to remove unreliable backgrounds associated with low signal-to-noise ratios. Then, we propose a coarse-to-fine accelerated correlation algorithm to eliminate the redundant iterations of the traditional correlation-based scheme. The frame reduction is achieved by a specially designed phase-shifting strategy combined with pixel-wise fluorescence pre-calibration. We experimentally demonstrate that, compared with conventional iterative correlation-based methods, the proposed algorithm improves the computational efficiency by a factor of 4.5 while maintaining high accuracy illumination parameter estimation. Meanwhile, our method achieves high-quality super-resolution reconstruction even with a reduction in two raw images, which improves the efficiency of image acquisition and ensures the robustness toward complex experimental environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
迅速的映冬关注了科研通微信公众号
1秒前
Candice完成签到,获得积分10
3秒前
JiangyingYu发布了新的文献求助50
4秒前
理想完成签到,获得积分20
4秒前
cardiology完成签到,获得积分10
4秒前
4秒前
Xu完成签到,获得积分10
5秒前
彭于晏应助彤彤采纳,获得10
5秒前
5秒前
科研通AI5应助饭饭看文献采纳,获得10
5秒前
干饭虫应助quasar采纳,获得20
6秒前
6秒前
CBLLBC发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
浮游应助arrebol采纳,获得10
9秒前
10秒前
哈基米德应助uduki采纳,获得10
10秒前
许健发布了新的文献求助10
11秒前
11秒前
11秒前
cardiology发布了新的文献求助10
11秒前
乐乐应助zz采纳,获得10
12秒前
浮游应助lql采纳,获得10
12秒前
12秒前
Cathy完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助30
14秒前
14秒前
冷酷雪碧发布了新的文献求助20
14秒前
动听白秋完成签到 ,获得积分10
15秒前
16秒前
雨前知了完成签到,获得积分10
16秒前
科研通AI5应助樱丸小桃子采纳,获得10
17秒前
17秒前
18秒前
Ava应助刚睡醒采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5089228
求助须知:如何正确求助?哪些是违规求助? 4304013
关于积分的说明 13413247
捐赠科研通 4129680
什么是DOI,文献DOI怎么找? 2261670
邀请新用户注册赠送积分活动 1265742
关于科研通互助平台的介绍 1200344