已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning-based Automatic Evaluation of Tissue Handling Skills in Laparoscopic Colorectal Surgery: A Retrospective Experimental Study

医学 像素 人工智能 腹腔镜手术 帧(网络) 外科 失血 腹腔镜检查 机器学习 计算机科学 电信
作者
Shoma Sasaki,Daichi Kitaguchi,Shin Takenaka,Kei Nakajima,Kimimasa Sasaki,Tateo Ogane,Nobuyoshi Takeshita,Naoto Gotohda,Masaaki Ito
出处
期刊:Annals of Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:278 (2): e250-e255 被引量:8
标识
DOI:10.1097/sla.0000000000005731
摘要

Objective: To develop a machine learning model that automatically quantifies the spread of blood in the surgical field using intraoperative videos of laparoscopic colorectal surgery and evaluate whether the index measured with the developed model can be used to assess tissue handling skill. Background: Although skill evaluation is crucial in laparoscopic surgery, existing evaluation systems suffer from evaluator subjectivity and are labor-intensive. Therefore, automatic evaluation using machine learning is potentially useful. Materials and Methods: In this retrospective experimental study, we used training data with annotated labels of blood or non-blood pixels on intraoperative images to develop a machine learning model to classify pixel RGB values into blood and non-blood. The blood pixel count per frame (the total number of blood pixels throughout a surgery divided by the number of frames) was compared among groups of surgeons with different tissue handling skills. Results: The overall accuracy of the machine learning model for the blood classification task was 85.7%. The high tissue handling skill group had the lowest blood pixel count per frame, and the novice surgeon group had the highest count (mean [SD]: high tissue handling skill group 20972.23 [19287.05] vs. low tissue handling skill group 34473.42 [28144.29] vs. novice surgeon group 50630.04 [42427.76], P <0.01). The difference between any 2 groups was significant. Conclusions: We developed a machine learning model to measure blood pixels in laparoscopic colorectal surgery images using RGB information. The blood pixel count per frame measured with this model significantly correlated with surgeons’ tissue handling skills.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
喻语儿完成签到,获得积分10
5秒前
dd99081驳回了wanci应助
8秒前
Elanie发布了新的文献求助10
8秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
烟花应助科研通管家采纳,获得10
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
15秒前
如意果汁发布了新的文献求助10
15秒前
打打应助北极星采纳,获得10
17秒前
wing完成签到 ,获得积分10
18秒前
bkagyin应助doubleshake采纳,获得10
19秒前
喜静完成签到 ,获得积分10
22秒前
22秒前
23秒前
小牛同志完成签到,获得积分10
23秒前
24秒前
24秒前
动听曼荷发布了新的文献求助10
25秒前
26秒前
L21发布了新的文献求助10
27秒前
端己发布了新的文献求助10
28秒前
yc发布了新的文献求助10
30秒前
31秒前
华仔应助端己采纳,获得10
32秒前
成诗怡完成签到,获得积分10
40秒前
nil完成签到,获得积分10
41秒前
41秒前
yc完成签到,获得积分10
44秒前
44秒前
45秒前
46秒前
47秒前
Dr-Luo发布了新的文献求助10
47秒前
马LLLLL发布了新的文献求助10
51秒前
Aaa_12012完成签到,获得积分10
51秒前
⊙▽⊙发布了新的文献求助10
51秒前
tututu发布了新的文献求助10
52秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248577
求助须知:如何正确求助?哪些是违规求助? 2892044
关于积分的说明 8269473
捐赠科研通 2560089
什么是DOI,文献DOI怎么找? 1388851
科研通“疑难数据库(出版商)”最低求助积分说明 650913
邀请新用户注册赠送积分活动 627798