Machine learning-based Automatic Evaluation of Tissue Handling Skills in Laparoscopic Colorectal Surgery: A Retrospective Experimental Study

医学 像素 人工智能 腹腔镜手术 帧(网络) 外科 失血 腹腔镜检查 机器学习 计算机科学 电信
作者
Shoma Sasaki,Daichi Kitaguchi,Shin Takenaka,Kei Nakajima,Kimimasa Sasaki,Tateo Ogane,Nobuyoshi Takeshita,Naoto Gotohda,Masaaki Ito
出处
期刊:Annals of Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:278 (2): e250-e255 被引量:8
标识
DOI:10.1097/sla.0000000000005731
摘要

Objective: To develop a machine learning model that automatically quantifies the spread of blood in the surgical field using intraoperative videos of laparoscopic colorectal surgery and evaluate whether the index measured with the developed model can be used to assess tissue handling skill. Background: Although skill evaluation is crucial in laparoscopic surgery, existing evaluation systems suffer from evaluator subjectivity and are labor-intensive. Therefore, automatic evaluation using machine learning is potentially useful. Materials and Methods: In this retrospective experimental study, we used training data with annotated labels of blood or non-blood pixels on intraoperative images to develop a machine learning model to classify pixel RGB values into blood and non-blood. The blood pixel count per frame (the total number of blood pixels throughout a surgery divided by the number of frames) was compared among groups of surgeons with different tissue handling skills. Results: The overall accuracy of the machine learning model for the blood classification task was 85.7%. The high tissue handling skill group had the lowest blood pixel count per frame, and the novice surgeon group had the highest count (mean [SD]: high tissue handling skill group 20972.23 [19287.05] vs. low tissue handling skill group 34473.42 [28144.29] vs. novice surgeon group 50630.04 [42427.76], P <0.01). The difference between any 2 groups was significant. Conclusions: We developed a machine learning model to measure blood pixels in laparoscopic colorectal surgery images using RGB information. The blood pixel count per frame measured with this model significantly correlated with surgeons’ tissue handling skills.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
费尔明娜完成签到,获得积分10
刚刚
zzaz发布了新的文献求助10
刚刚
刚刚
根正家的小苗红长歪了完成签到,获得积分10
刚刚
刚刚
刚刚
难搞哦完成签到,获得积分10
1秒前
梨里发布了新的文献求助10
1秒前
1秒前
碧蓝问玉完成签到 ,获得积分10
1秒前
du2002完成签到,获得积分10
1秒前
WC完成签到,获得积分10
1秒前
1秒前
3秒前
鹿致远发布了新的文献求助10
4秒前
4秒前
苹果巧蕊完成签到 ,获得积分10
5秒前
sun0115完成签到 ,获得积分10
5秒前
wang完成签到 ,获得积分10
5秒前
Sun发布了新的文献求助10
5秒前
华123完成签到,获得积分10
5秒前
篇篇高分发布了新的文献求助10
6秒前
迅速的冬日完成签到,获得积分10
6秒前
unique完成签到 ,获得积分10
6秒前
华仔应助友好的储采纳,获得10
7秒前
qipilang100发布了新的文献求助10
7秒前
快乐再出发完成签到,获得积分10
7秒前
小骁同学完成签到,获得积分10
8秒前
呼呼呼完成签到 ,获得积分10
8秒前
8秒前
高兴的半仙完成签到,获得积分10
8秒前
9秒前
小方关注了科研通微信公众号
9秒前
LZY完成签到,获得积分10
11秒前
11秒前
钮以南完成签到,获得积分10
12秒前
12秒前
泥蝶完成签到,获得积分20
12秒前
求大佬救救我呜呜呜完成签到,获得积分20
13秒前
13秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3072891
求助须知:如何正确求助?哪些是违规求助? 2726503
关于积分的说明 7495286
捐赠科研通 2374552
什么是DOI,文献DOI怎么找? 1259054
科研通“疑难数据库(出版商)”最低求助积分说明 610527
版权声明 597020