Machine learning-based Automatic Evaluation of Tissue Handling Skills in Laparoscopic Colorectal Surgery: A Retrospective Experimental Study

医学 像素 人工智能 腹腔镜手术 帧(网络) 外科 失血 腹腔镜检查 机器学习 计算机科学 电信
作者
Shoma Sasaki,Daichi Kitaguchi,Shin Takenaka,Kei Nakajima,Kimimasa Sasaki,Tateo Ogane,Nobuyoshi Takeshita,Naoto Gotohda,Masaaki Ito
出处
期刊:Annals of Surgery [Lippincott Williams & Wilkins]
卷期号:278 (2): e250-e255 被引量:13
标识
DOI:10.1097/sla.0000000000005731
摘要

Objective: To develop a machine learning model that automatically quantifies the spread of blood in the surgical field using intraoperative videos of laparoscopic colorectal surgery and evaluate whether the index measured with the developed model can be used to assess tissue handling skill. Background: Although skill evaluation is crucial in laparoscopic surgery, existing evaluation systems suffer from evaluator subjectivity and are labor-intensive. Therefore, automatic evaluation using machine learning is potentially useful. Materials and Methods: In this retrospective experimental study, we used training data with annotated labels of blood or non-blood pixels on intraoperative images to develop a machine learning model to classify pixel RGB values into blood and non-blood. The blood pixel count per frame (the total number of blood pixels throughout a surgery divided by the number of frames) was compared among groups of surgeons with different tissue handling skills. Results: The overall accuracy of the machine learning model for the blood classification task was 85.7%. The high tissue handling skill group had the lowest blood pixel count per frame, and the novice surgeon group had the highest count (mean [SD]: high tissue handling skill group 20972.23 [19287.05] vs. low tissue handling skill group 34473.42 [28144.29] vs. novice surgeon group 50630.04 [42427.76], P <0.01). The difference between any 2 groups was significant. Conclusions: We developed a machine learning model to measure blood pixels in laparoscopic colorectal surgery images using RGB information. The blood pixel count per frame measured with this model significantly correlated with surgeons’ tissue handling skills.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gu完成签到 ,获得积分10
刚刚
张泽芝完成签到,获得积分20
刚刚
SYLH应助勤劳怜寒采纳,获得10
刚刚
SYLH应助勤劳怜寒采纳,获得10
刚刚
小无发布了新的文献求助10
1秒前
carly发布了新的文献求助10
1秒前
陈一诺发布了新的文献求助10
1秒前
Mody发布了新的文献求助10
1秒前
桐桐应助hhhhhhmt采纳,获得10
2秒前
2秒前
3秒前
SYLH应助科研小民工采纳,获得20
3秒前
三七完成签到,获得积分20
5秒前
ark861023发布了新的文献求助10
7秒前
gaogaogao发布了新的文献求助10
7秒前
NN应助郑郑采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
nebula应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得30
11秒前
cdercder应助科研通管家采纳,获得20
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
Cactus应助科研通管家采纳,获得30
12秒前
12秒前
qiuyue完成签到,获得积分10
12秒前
FAN应助科研通管家采纳,获得10
12秒前
思源应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
13秒前
13秒前
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
健忘的向秋完成签到,获得积分10
13秒前
CipherSage应助lzj采纳,获得10
13秒前
SYLH应助阿了采纳,获得80
13秒前
Mody完成签到,获得积分10
14秒前
Fx完成签到 ,获得积分10
14秒前
坚定的雁完成签到 ,获得积分10
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3743745
求助须知:如何正确求助?哪些是违规求助? 3286402
关于积分的说明 10050098
捐赠科研通 3002950
什么是DOI,文献DOI怎么找? 1648568
邀请新用户注册赠送积分活动 784704
科研通“疑难数据库(出版商)”最低求助积分说明 750802