土壤水分
污染
环境化学
化学
水田
农学
土壤污染
环境科学
环境工程
土壤科学
生态学
生物
作者
Xiong Yang,Dongming Wang,Ye Tao,Min Shen,Wei Wei,Chuang Cai,Changfeng Ding,Jiuyu Li,Lian Song,Bin Yin,Chunwu Zhu
标识
DOI:10.1016/j.jhazmat.2022.130140
摘要
The rising atmospheric CO2 is a major driver for climate change, directly affects rice production. Cadmium (Cd) in paddy soils also serves as a persistent concern. Currently, few studies consider the rice response to coupled stresses of elevated CO2 (eCO2) and soil Cd. Experimental evidence understanding the effects and mechanisms of eCO2 on Cd uptake by rice is lacking yet. In a free-air CO2 enrichment (FACE) system, a 3-year pot experiment was conducted to explore the Cd uptake by rice under two CO2 conditions (ambient and ambient + 200 µmol·mol−1) using combinations of in-situ Cd-contaminated soils and associated rice varieties. Results showed that more low-crystalline Fe oxides (Feh) in iron plaque (IP) were deposited on root surface with the increased dissolved Fe2+ due to lower soil redox status under eCO2. The Cd accumulation in rice was hindered due to more Cd associated with Feh (Feh-Cd) rather than uptake by roots. Taken together, the relative effects of eCO2 on Cd uptake by rice were consistent across years under different Cd-contaminated soils. Our findings will help to better understand the Cd uptake by rice under future climate conditions, and thus push the development of climate-crop-soil models and accurate prediction for food security.
科研通智能强力驱动
Strongly Powered by AbleSci AI