材料科学
涂层
复合材料
纳米复合材料
倍半硅氧烷
压痕硬度
聚合物
微观结构
作者
Lin Xiong,Hao-Tian Li,Ming-Xi Nie,Sirui Fu,Yiwen Li,Qin Zhang,Feng Chen,Di Han,Qiang Fu
标识
DOI:10.1021/acsami.2c13256
摘要
Transparent functional coatings with glass-like hardness and polymer-like flexibility are highly desirable for flexible and foldable displays. Although several coatings have been developed toward this goal, achieving a functional coating with 9H pencil hardness and extremely low bending radius of curvature (rc) remains a great challenge due to the inherent conflict between hardness and flexibility. To overcome this trade-off, a facile strategy is developed herein. The coating is an organic-inorganic hybrid nanocomposite that is prepared from thiol-acrylate polymerization of acrylo polyhedral oligomeric silsesquioxane and multifunctional thiols. The former provides the desired hardness, while the latter affords high flexibility and the maximum level of chemical bonding for organic-inorganic phases. Because of the good miscibility and varied functionality of monomers, we are able to manipulate the composition and internal structure of coating systematically, endowing it with high transparency (98%, 550 nm), super hardness (9H), excellent low modulus (1.85 GPa, the most flexible one to date), and the ability to withstand steel wool's abrasion and repeated bending (rc = 0.8 mm) 10 000 times on PET film. On the final coating, both antifouling and antibacterial abilities are integrated without sacrificing its other properties after postfunctionalizing a zwitterionic layer. This work balances the hardness-flexibility conflict effectively and provides some useful protective coatings for next-generation displays.
科研通智能强力驱动
Strongly Powered by AbleSci AI