Improved modeling of canopy transpiration for temperate forests by incorporating a LAI-based dynamic parametrization scheme of stomatal slope

温带雨林 大气科学 环境科学 蒸腾作用 温带森林 天蓬 温带气候 参数化(大气建模) 生态学 地质学 物理 生态系统 植物 光合作用 量子力学 辐射传输 生物
作者
Jiaxin Jin,Yan Tao,Han Wang,Xuanlong Ma,Mingzhu He,Ying Wang,Weifeng Wang,Fengsheng Guo,Yanfei Cai,Qiuan Zhu,Jin Wu
出处
期刊:Agricultural and Forest Meteorology [Elsevier]
卷期号:326: 109157-109157 被引量:2
标识
DOI:10.1016/j.agrformet.2022.109157
摘要

• The flux-derived slope (G 1 ) in the USO model was investigated in temperate forests. • G 1 displays considerable seasonal variations with a minimum value in mid-summer • Satellite-derived leaf area index (LAI) could well capture the seasonality of G 1 . • The LAI-based dynamic G 1 parametrization was used to modeling transportation (T c ). • The scheme of dynamic G 1 could effectively reduce the error in T c estimation. The ecosystem-level conductance-photosynthesis models, which represent a linearly coupled relationship between canopy stomatal conductance (G s ) and CO 2 assimilation, have been increasingly used for modeling transpiration (T c ). As a key parameter in these models, the slope parameter (G 1 ) has been observed to vary considerably over the seasons in the field, but is often parametrized with a biome-specific temporally constant G 1 , resulting in large potential uncertainty. Here we hypothesized that G 1 varies with leaf area index (LAI) phenology and soil water content (SWC) seasonality, and accurate characterization of G 1 seasonality offers an avenue to improve T c modelling. To test these hypotheses, we first investigated the seasonality of Eddy flux-derived G 1 and then explored its relationship with satellite-derived LAI and field-observed SWC seasonality at 12 temperate forest FLUXNET sites across the Northern Hemisphere. Last, we cross-compared the two schemes of model parameterization of G 1 for modeling T c : (1) a constant G 1 (FIX) and (2) a dynamic G 1 parameterized using the selected variables (DYN). Our results show G 1 displays considerable seasonal variations across all sites, with a minimum value in mid-summer. Further variance partitioning analysis demonstrates that the seasonal variations in G 1 show direct linkages with LAI phenology rather than SWC seasonality likely associated with leaf aging and ontogeny development. Last, we found relative to the FIX model, the DYN model (using LAI for G 1 parameterization) significantly reduced the model uncertainty in terms of RMSE by 24.6 ± 11.8% and 32.0 ± 8.7%, respectively for G s and T c at a daily scale. These results collectively improve our understanding of the dynamic pattern and proximate controls of G 1 seasonality, and highlight the effectiveness of using remote sensing-derived LAI phenology for improved characterization of G 1 seasonality that ultimately contributes to the improved process model simulations of the seasonal dynamics of G s and T c across temperate forest landscapes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaofu完成签到,获得积分10
1秒前
km完成签到,获得积分10
1秒前
myt发布了新的文献求助30
1秒前
无极微光应助十米采纳,获得20
1秒前
1秒前
CodeCraft应助小飞鼠采纳,获得10
1秒前
2秒前
盛夏如花发布了新的文献求助10
2秒前
2秒前
455发布了新的文献求助10
2秒前
dragon完成签到 ,获得积分10
2秒前
斯文败类应助烂漫耳机采纳,获得10
3秒前
渔落发布了新的文献求助10
3秒前
阳光水绿完成签到,获得积分10
3秒前
4秒前
我是狗发布了新的文献求助10
4秒前
黑白菜完成签到,获得积分10
4秒前
5秒前
Always62442完成签到,获得积分10
5秒前
凌L发布了新的文献求助10
5秒前
GH发布了新的文献求助10
5秒前
桐桐应助11采纳,获得40
5秒前
研友_nqvkOZ完成签到,获得积分10
6秒前
12138完成签到,获得积分10
6秒前
6秒前
背后含之完成签到,获得积分10
6秒前
共享精神应助木辛采纳,获得10
7秒前
7秒前
bqk完成签到,获得积分10
8秒前
夏沫发布了新的文献求助30
8秒前
如昨完成签到,获得积分10
8秒前
8秒前
9秒前
研友_VZG7GZ应助Aprilapple采纳,获得10
9秒前
张旭完成签到,获得积分10
9秒前
aikeyan发布了新的文献求助10
9秒前
烂漫碧玉发布了新的文献求助10
9秒前
英姑应助yfn采纳,获得10
9秒前
暖秋发布了新的文献求助10
9秒前
修勾完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836