A novel multimodal deep learning model for preoperative prediction of microvascular invasion and outcome in hepatocellular carcinoma

医学 磁共振成像 接收机工作特性 曲线下面积 肝细胞癌 放射科 人工智能 核医学 内科学 计算机科学
作者
Fang Wang,Qingqing Chen,Yinan Chen,Yajing Zhu,Yuanyuan Zhang,Dan Cao,Wei Zhou,Xiao Liang,Yunjun Yang,Lanfen Lin,Hongjie Hu
出处
期刊:Ejso [Elsevier BV]
卷期号:49 (1): 156-164 被引量:13
标识
DOI:10.1016/j.ejso.2022.08.036
摘要

Background Accurate preoperative identification of the microvascular invasion (MVI) can relieve the pressure from personalized treatment adaptation and improve the poor prognosis for hepatocellular carcinoma (HCC). This study aimed to develop and validate a novel multimodal deep learning (DL) model for predicting MVI based on multi-parameter magnetic resonance imaging (MRI) and contrast-enhanced computed tomography (CT). Methods A total of 397 HCC patients underwent both CT and MRI examinations before surgery. We established the radiological models (RCT, RMRI) by support vector machine (SVM), DL models (DLCT_ALL, DLMRI_ALL, DLCT + MRI) by ResNet18. The comprehensive model (CALL) involving multi-modality DL features and clinical and radiological features was constructed using SVM. Model performance was quantified by the area under the receiver operating characteristic curve (AUC) and compared by net reclassification index (NRI) and integrated discrimination improvement (IDI). Results The DLCT + MRI model exhibited superior predicted efficiency over single-modality models, especially over the DLCT_ALL model (AUC: 0.819 vs. 0.742, NRI > 0, IDI > 0). The DLMRI_ALL model improved the performance over the RMRI model (AUC: 0.794 vs. 0.766, NRI > 0, IDI < 0), but no such difference was found between the DLCT_ALL model and RCT model (AUC: 0.742 vs. 0.710, NRI < 0, IDI < 0). Furthermore, both the DLCT + MRI and CALL models revealed the prognostic power in recurrence-free survival stratification (P < 0.001). Conclusion The proposed DLCT + MRI model showed robust capability in predicting MVI and outcomes for HCC. Besides, the identification ability of the multi-modality DL model was better than any single modality, especially for CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xz完成签到,获得积分10
刚刚
食堂里的明湖鸭完成签到,获得积分10
1秒前
山大琦子完成签到,获得积分10
1秒前
dwfwq发布了新的文献求助10
2秒前
噜噜噜完成签到,获得积分10
2秒前
极品男大发布了新的文献求助10
3秒前
3秒前
4秒前
SciGPT应助行止采纳,获得10
5秒前
6秒前
上官若男应助zhouxuefeng采纳,获得10
9秒前
吃猫的鱼发布了新的文献求助10
9秒前
9秒前
pp完成签到,获得积分10
10秒前
感动的飞珍关注了科研通微信公众号
10秒前
11秒前
12秒前
徐哗啦完成签到,获得积分10
12秒前
领导范儿应助334采纳,获得10
13秒前
文献查找发布了新的文献求助10
15秒前
15秒前
朱朱子发布了新的文献求助10
16秒前
CodeCraft应助pp采纳,获得10
17秒前
18秒前
19秒前
19秒前
bird发布了新的文献求助10
19秒前
徐嘻嘻完成签到,获得积分10
20秒前
21秒前
22秒前
wy.he应助yyy采纳,获得10
22秒前
22秒前
Nicho发布了新的文献求助10
23秒前
包容冰夏完成签到,获得积分10
24秒前
25秒前
25秒前
追寻冰淇淋应助皮灵犀采纳,获得30
25秒前
香蕉觅云应助香菜芋头采纳,获得10
26秒前
霸气谷蕊完成签到,获得积分10
26秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967779
求助须知:如何正确求助?哪些是违规求助? 3512913
关于积分的说明 11165458
捐赠科研通 3247930
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578