A novel multimodal deep learning model for preoperative prediction of microvascular invasion and outcome in hepatocellular carcinoma

医学 磁共振成像 接收机工作特性 曲线下面积 肝细胞癌 放射科 人工智能 核医学 内科学 计算机科学
作者
Fang Wang,Qingqing Chen,Yinan Chen,Yajing Zhu,Yuanyuan Zhang,Dan Cao,Wei Zhou,Xiao Liang,Yunjun Yang,Lanfen Lin,Hongjie Hu
出处
期刊:Ejso [Elsevier BV]
卷期号:49 (1): 156-164 被引量:13
标识
DOI:10.1016/j.ejso.2022.08.036
摘要

Background Accurate preoperative identification of the microvascular invasion (MVI) can relieve the pressure from personalized treatment adaptation and improve the poor prognosis for hepatocellular carcinoma (HCC). This study aimed to develop and validate a novel multimodal deep learning (DL) model for predicting MVI based on multi-parameter magnetic resonance imaging (MRI) and contrast-enhanced computed tomography (CT). Methods A total of 397 HCC patients underwent both CT and MRI examinations before surgery. We established the radiological models (RCT, RMRI) by support vector machine (SVM), DL models (DLCT_ALL, DLMRI_ALL, DLCT + MRI) by ResNet18. The comprehensive model (CALL) involving multi-modality DL features and clinical and radiological features was constructed using SVM. Model performance was quantified by the area under the receiver operating characteristic curve (AUC) and compared by net reclassification index (NRI) and integrated discrimination improvement (IDI). Results The DLCT + MRI model exhibited superior predicted efficiency over single-modality models, especially over the DLCT_ALL model (AUC: 0.819 vs. 0.742, NRI > 0, IDI > 0). The DLMRI_ALL model improved the performance over the RMRI model (AUC: 0.794 vs. 0.766, NRI > 0, IDI < 0), but no such difference was found between the DLCT_ALL model and RCT model (AUC: 0.742 vs. 0.710, NRI < 0, IDI < 0). Furthermore, both the DLCT + MRI and CALL models revealed the prognostic power in recurrence-free survival stratification (P < 0.001). Conclusion The proposed DLCT + MRI model showed robust capability in predicting MVI and outcomes for HCC. Besides, the identification ability of the multi-modality DL model was better than any single modality, especially for CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跳熊完成签到,获得积分10
1秒前
月亮打盹儿完成签到,获得积分10
1秒前
adam完成签到,获得积分10
1秒前
Zenglongying发布了新的文献求助10
1秒前
1秒前
酷波er应助科研通管家采纳,获得30
1秒前
完美世界应助科研通管家采纳,获得10
2秒前
zhutae应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
2秒前
Owen应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
che应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
英俊的铭应助快乐的伟诚采纳,获得10
2秒前
阳光c完成签到 ,获得积分10
3秒前
英勇煜城发布了新的文献求助10
5秒前
KYG发布了新的文献求助30
5秒前
5秒前
Yolo完成签到,获得积分10
7秒前
上官若男应助Zenglongying采纳,获得10
9秒前
10秒前
11秒前
blossoms完成签到 ,获得积分10
14秒前
15秒前
cdercder应助行者无疆采纳,获得20
16秒前
顾矜应助KYG采纳,获得10
18秒前
Hello应助初色采纳,获得10
18秒前
汉堡包应助结实涑采纳,获得10
20秒前
22秒前
KYG完成签到,获得积分10
26秒前
Faye完成签到 ,获得积分10
27秒前
小鹿不迷路完成签到,获得积分10
31秒前
shuang完成签到 ,获得积分10
33秒前
34秒前
36秒前
脑洞疼应助xx采纳,获得10
36秒前
Cxg发布了新的文献求助10
39秒前
斯文败类应助仲半邪采纳,获得10
44秒前
minisword完成签到,获得积分10
44秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
What’s the Evidence? An Investigation into Teacher Quality 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3701566
求助须知:如何正确求助?哪些是违规求助? 3251755
关于积分的说明 9876150
捐赠科研通 2963720
什么是DOI,文献DOI怎么找? 1625279
邀请新用户注册赠送积分活动 769926
科研通“疑难数据库(出版商)”最低求助积分说明 742630