A novel multimodal deep learning model for preoperative prediction of microvascular invasion and outcome in hepatocellular carcinoma

医学 磁共振成像 接收机工作特性 曲线下面积 肝细胞癌 放射科 人工智能 核医学 内科学 计算机科学
作者
Fang Wang,Qingqing Chen,Yinan Chen,Yajing Zhu,Yuanyuan Zhang,Dan Cao,Wei Zhou,Xiao Liang,Yunjun Yang,Lanfen Lin,Hongjie Hu
出处
期刊:Ejso [Elsevier]
卷期号:49 (1): 156-164 被引量:9
标识
DOI:10.1016/j.ejso.2022.08.036
摘要

Background Accurate preoperative identification of the microvascular invasion (MVI) can relieve the pressure from personalized treatment adaptation and improve the poor prognosis for hepatocellular carcinoma (HCC). This study aimed to develop and validate a novel multimodal deep learning (DL) model for predicting MVI based on multi-parameter magnetic resonance imaging (MRI) and contrast-enhanced computed tomography (CT). Methods A total of 397 HCC patients underwent both CT and MRI examinations before surgery. We established the radiological models (RCT, RMRI) by support vector machine (SVM), DL models (DLCT_ALL, DLMRI_ALL, DLCT + MRI) by ResNet18. The comprehensive model (CALL) involving multi-modality DL features and clinical and radiological features was constructed using SVM. Model performance was quantified by the area under the receiver operating characteristic curve (AUC) and compared by net reclassification index (NRI) and integrated discrimination improvement (IDI). Results The DLCT + MRI model exhibited superior predicted efficiency over single-modality models, especially over the DLCT_ALL model (AUC: 0.819 vs. 0.742, NRI > 0, IDI > 0). The DLMRI_ALL model improved the performance over the RMRI model (AUC: 0.794 vs. 0.766, NRI > 0, IDI < 0), but no such difference was found between the DLCT_ALL model and RCT model (AUC: 0.742 vs. 0.710, NRI < 0, IDI < 0). Furthermore, both the DLCT + MRI and CALL models revealed the prognostic power in recurrence-free survival stratification (P < 0.001). Conclusion The proposed DLCT + MRI model showed robust capability in predicting MVI and outcomes for HCC. Besides, the identification ability of the multi-modality DL model was better than any single modality, especially for CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小灰灰完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
3秒前
Hello应助hushan53采纳,获得10
7秒前
薰硝壤应助awei采纳,获得10
7秒前
orange完成签到,获得积分10
7秒前
JHS完成签到,获得积分10
7秒前
可爱的函函应助陌君子筱采纳,获得10
7秒前
调皮烧鹅发布了新的文献求助10
7秒前
8秒前
Yina完成签到 ,获得积分10
8秒前
北斗发布了新的文献求助10
10秒前
八点必起发布了新的文献求助10
12秒前
13秒前
桐桐应助Janvenns采纳,获得10
13秒前
紫薯球完成签到,获得积分10
13秒前
爆米花应助猪猪hero采纳,获得10
14秒前
17秒前
19秒前
21秒前
木木发布了新的文献求助10
21秒前
妮露的修狗完成签到,获得积分10
22秒前
23秒前
blk完成签到,获得积分10
24秒前
25秒前
26秒前
27秒前
27秒前
年轻的馒头完成签到,获得积分20
27秒前
无花果应助南庭采纳,获得10
27秒前
28秒前
搜集达人应助神勇的薯片采纳,获得10
28秒前
猪猪hero发布了新的文献求助10
28秒前
snowpie完成签到 ,获得积分10
29秒前
guangyu发布了新的文献求助10
29秒前
30秒前
31秒前
31秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149396
求助须知:如何正确求助?哪些是违规求助? 2800463
关于积分的说明 7840190
捐赠科研通 2458038
什么是DOI,文献DOI怎么找? 1308223
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706