A novel multimodal deep learning model for preoperative prediction of microvascular invasion and outcome in hepatocellular carcinoma

医学 磁共振成像 接收机工作特性 曲线下面积 肝细胞癌 放射科 人工智能 核医学 内科学 计算机科学
作者
Fang Wang,Qingqing Chen,Yinan Chen,Yajing Zhu,Yuanyuan Zhang,Dan Cao,Wei Zhou,Xiao Liang,Yunjun Yang,Lanfen Lin,Hongjie Hu
出处
期刊:Ejso [Elsevier]
卷期号:49 (1): 156-164 被引量:30
标识
DOI:10.1016/j.ejso.2022.08.036
摘要

Background Accurate preoperative identification of the microvascular invasion (MVI) can relieve the pressure from personalized treatment adaptation and improve the poor prognosis for hepatocellular carcinoma (HCC). This study aimed to develop and validate a novel multimodal deep learning (DL) model for predicting MVI based on multi-parameter magnetic resonance imaging (MRI) and contrast-enhanced computed tomography (CT). Methods A total of 397 HCC patients underwent both CT and MRI examinations before surgery. We established the radiological models (RCT, RMRI) by support vector machine (SVM), DL models (DLCT_ALL, DLMRI_ALL, DLCT + MRI) by ResNet18. The comprehensive model (CALL) involving multi-modality DL features and clinical and radiological features was constructed using SVM. Model performance was quantified by the area under the receiver operating characteristic curve (AUC) and compared by net reclassification index (NRI) and integrated discrimination improvement (IDI). Results The DLCT + MRI model exhibited superior predicted efficiency over single-modality models, especially over the DLCT_ALL model (AUC: 0.819 vs. 0.742, NRI > 0, IDI > 0). The DLMRI_ALL model improved the performance over the RMRI model (AUC: 0.794 vs. 0.766, NRI > 0, IDI < 0), but no such difference was found between the DLCT_ALL model and RCT model (AUC: 0.742 vs. 0.710, NRI < 0, IDI < 0). Furthermore, both the DLCT + MRI and CALL models revealed the prognostic power in recurrence-free survival stratification (P < 0.001). Conclusion The proposed DLCT + MRI model showed robust capability in predicting MVI and outcomes for HCC. Besides, the identification ability of the multi-modality DL model was better than any single modality, especially for CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kiana发布了新的文献求助30
1秒前
量子星尘发布了新的文献求助20
1秒前
科目三应助杨华启采纳,获得10
1秒前
上官若男应助活泼山雁采纳,获得10
1秒前
1秒前
明理香烟发布了新的文献求助10
1秒前
1秒前
LSS完成签到,获得积分10
1秒前
草丛里的羊驼完成签到,获得积分10
2秒前
快乐的猪完成签到,获得积分10
2秒前
海晏河清发布了新的文献求助10
2秒前
LYH完成签到,获得积分10
2秒前
123lura发布了新的文献求助10
4秒前
虚幻百川应助虚心的静枫采纳,获得10
4秒前
ccepted1122发布了新的文献求助30
4秒前
慕青应助正直海之采纳,获得10
4秒前
张锐斌发布了新的文献求助10
4秒前
4秒前
顾矜应助兴奋的雪糕采纳,获得10
5秒前
5秒前
5秒前
CodeCraft应助xny采纳,获得10
5秒前
xiaojiahuo发布了新的文献求助10
5秒前
wxxz发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
包容春天发布了新的文献求助10
6秒前
7秒前
ding应助神勇绮烟采纳,获得10
7秒前
AyraN完成签到,获得积分10
7秒前
哈哈哈发布了新的文献求助10
7秒前
7秒前
hhh完成签到,获得积分10
7秒前
Zzz发布了新的文献求助20
8秒前
gudujian870928完成签到,获得积分10
8秒前
8秒前
香蕉觅云应助ira采纳,获得10
8秒前
一念之间发布了新的文献求助10
8秒前
君叁叁发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017