A novel multimodal deep learning model for preoperative prediction of microvascular invasion and outcome in hepatocellular carcinoma

医学 磁共振成像 接收机工作特性 曲线下面积 肝细胞癌 放射科 人工智能 核医学 内科学 计算机科学
作者
Fang Wang,Qingqing Chen,Yinan Chen,Yajing Zhu,Yuanyuan Zhang,Dan Cao,Wei Zhou,Xiao Liang,Yunjun Yang,Lanfen Lin,Hongjie Hu
出处
期刊:Ejso [Elsevier]
卷期号:49 (1): 156-164 被引量:30
标识
DOI:10.1016/j.ejso.2022.08.036
摘要

Background Accurate preoperative identification of the microvascular invasion (MVI) can relieve the pressure from personalized treatment adaptation and improve the poor prognosis for hepatocellular carcinoma (HCC). This study aimed to develop and validate a novel multimodal deep learning (DL) model for predicting MVI based on multi-parameter magnetic resonance imaging (MRI) and contrast-enhanced computed tomography (CT). Methods A total of 397 HCC patients underwent both CT and MRI examinations before surgery. We established the radiological models (RCT, RMRI) by support vector machine (SVM), DL models (DLCT_ALL, DLMRI_ALL, DLCT + MRI) by ResNet18. The comprehensive model (CALL) involving multi-modality DL features and clinical and radiological features was constructed using SVM. Model performance was quantified by the area under the receiver operating characteristic curve (AUC) and compared by net reclassification index (NRI) and integrated discrimination improvement (IDI). Results The DLCT + MRI model exhibited superior predicted efficiency over single-modality models, especially over the DLCT_ALL model (AUC: 0.819 vs. 0.742, NRI > 0, IDI > 0). The DLMRI_ALL model improved the performance over the RMRI model (AUC: 0.794 vs. 0.766, NRI > 0, IDI < 0), but no such difference was found between the DLCT_ALL model and RCT model (AUC: 0.742 vs. 0.710, NRI < 0, IDI < 0). Furthermore, both the DLCT + MRI and CALL models revealed the prognostic power in recurrence-free survival stratification (P < 0.001). Conclusion The proposed DLCT + MRI model showed robust capability in predicting MVI and outcomes for HCC. Besides, the identification ability of the multi-modality DL model was better than any single modality, especially for CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
干冷安发布了新的文献求助30
7秒前
薄饼哥丶发布了新的文献求助10
9秒前
123发布了新的文献求助10
10秒前
11秒前
可爱的函函应助加百莉采纳,获得10
18秒前
云淡风轻发布了新的文献求助30
20秒前
洋芋擦擦完成签到 ,获得积分10
23秒前
五月天完成签到,获得积分10
23秒前
24秒前
上官若男应助修狗叫大黄采纳,获得10
29秒前
29秒前
传奇3应助Jere采纳,获得20
29秒前
云淡风轻完成签到,获得积分10
31秒前
科研通AI6应助lemon采纳,获得10
33秒前
33秒前
猛加薪完成签到 ,获得积分10
35秒前
shufessm完成签到,获得积分0
35秒前
jia完成签到 ,获得积分10
35秒前
甜蜜黄豆完成签到,获得积分10
38秒前
甜蜜黄豆发布了新的文献求助10
42秒前
42秒前
czcmh应助科研通管家采纳,获得30
42秒前
一叶知秋应助科研通管家采纳,获得10
42秒前
orixero应助科研通管家采纳,获得10
43秒前
bkagyin应助科研通管家采纳,获得10
43秒前
情怀应助科研通管家采纳,获得10
43秒前
乐乐应助科研通管家采纳,获得10
43秒前
Mic应助科研通管家采纳,获得10
43秒前
大个应助科研通管家采纳,获得10
43秒前
上官若男应助科研通管家采纳,获得10
43秒前
Jasper应助科研通管家采纳,获得10
43秒前
czcmh应助科研通管家采纳,获得30
43秒前
彭于晏应助科研通管家采纳,获得10
43秒前
天天快乐应助科研通管家采纳,获得10
43秒前
情怀应助科研通管家采纳,获得10
43秒前
sevenhill应助科研通管家采纳,获得10
43秒前
一叶知秋应助科研通管家采纳,获得10
43秒前
FashionBoy应助科研通管家采纳,获得10
43秒前
SciGPT应助科研通管家采纳,获得10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557634
求助须知:如何正确求助?哪些是违规求助? 4642696
关于积分的说明 14668874
捐赠科研通 4584158
什么是DOI,文献DOI怎么找? 2514615
邀请新用户注册赠送积分活动 1488842
关于科研通互助平台的介绍 1459533