亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel multimodal deep learning model for preoperative prediction of microvascular invasion and outcome in hepatocellular carcinoma

医学 磁共振成像 接收机工作特性 曲线下面积 肝细胞癌 放射科 人工智能 核医学 内科学 计算机科学
作者
Fang Wang,Qingqing Chen,Yinan Chen,Yajing Zhu,Yuanyuan Zhang,Dan Cao,Wei Zhou,Xiao Liang,Yunjun Yang,Lanfen Lin,Hongjie Hu
出处
期刊:Ejso [Elsevier BV]
卷期号:49 (1): 156-164 被引量:13
标识
DOI:10.1016/j.ejso.2022.08.036
摘要

Background Accurate preoperative identification of the microvascular invasion (MVI) can relieve the pressure from personalized treatment adaptation and improve the poor prognosis for hepatocellular carcinoma (HCC). This study aimed to develop and validate a novel multimodal deep learning (DL) model for predicting MVI based on multi-parameter magnetic resonance imaging (MRI) and contrast-enhanced computed tomography (CT). Methods A total of 397 HCC patients underwent both CT and MRI examinations before surgery. We established the radiological models (RCT, RMRI) by support vector machine (SVM), DL models (DLCT_ALL, DLMRI_ALL, DLCT + MRI) by ResNet18. The comprehensive model (CALL) involving multi-modality DL features and clinical and radiological features was constructed using SVM. Model performance was quantified by the area under the receiver operating characteristic curve (AUC) and compared by net reclassification index (NRI) and integrated discrimination improvement (IDI). Results The DLCT + MRI model exhibited superior predicted efficiency over single-modality models, especially over the DLCT_ALL model (AUC: 0.819 vs. 0.742, NRI > 0, IDI > 0). The DLMRI_ALL model improved the performance over the RMRI model (AUC: 0.794 vs. 0.766, NRI > 0, IDI < 0), but no such difference was found between the DLCT_ALL model and RCT model (AUC: 0.742 vs. 0.710, NRI < 0, IDI < 0). Furthermore, both the DLCT + MRI and CALL models revealed the prognostic power in recurrence-free survival stratification (P < 0.001). Conclusion The proposed DLCT + MRI model showed robust capability in predicting MVI and outcomes for HCC. Besides, the identification ability of the multi-modality DL model was better than any single modality, especially for CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
馆长应助科研通管家采纳,获得10
29秒前
37秒前
熊熊完成签到 ,获得积分10
39秒前
量子星尘发布了新的文献求助10
45秒前
MchemG完成签到,获得积分0
1分钟前
zsmj23完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
who完成签到,获得积分10
1分钟前
who发布了新的文献求助10
1分钟前
2分钟前
量子星尘发布了新的文献求助20
2分钟前
3分钟前
QCB完成签到 ,获得积分10
3分钟前
3分钟前
Vino发布了新的文献求助10
3分钟前
Vino完成签到,获得积分10
3分钟前
4分钟前
Orange应助科研通管家采纳,获得10
4分钟前
Cherie77完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
穆振家完成签到,获得积分10
4分钟前
5分钟前
5分钟前
6分钟前
Axs完成签到,获得积分10
6分钟前
Kevin完成签到,获得积分10
6分钟前
6分钟前
羞涩的傲菡完成签到,获得积分10
6分钟前
量子星尘发布了新的文献求助50
7分钟前
7分钟前
7分钟前
闲逛的木头2完成签到,获得积分20
7分钟前
捉迷藏完成签到,获得积分0
8分钟前
馆长应助科研通管家采纳,获得10
8分钟前
迅速的岩完成签到,获得积分10
8分钟前
HYQ完成签到 ,获得积分10
9分钟前
9分钟前
嘻嘻完成签到,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596127
求助须知:如何正确求助?哪些是违规求助? 4008212
关于积分的说明 12408971
捐赠科研通 3687127
什么是DOI,文献DOI怎么找? 2032233
邀请新用户注册赠送积分活动 1065470
科研通“疑难数据库(出版商)”最低求助积分说明 950783