A two-stage deep-learning based segmentation model for crop disease quantification based on corn field imagery

分割 阶段(地层学) 人工智能 深度学习 试验装置 领域(数学) 计算机科学 模式识别(心理学) 地图学 统计 数学 地理 生物 古生物学 纯数学
作者
L. G. Divyanth,Aanis Ahmad,Dharmendra Saraswat
出处
期刊:Smart agricultural technology [Elsevier]
卷期号:3: 100108-100108 被引量:25
标识
DOI:10.1016/j.atech.2022.100108
摘要

It is important to develop accurate disease management systems to identify and segment corn disease lesions and estimate their severity under complex field conditions. Although deep learning techniques are becoming increasingly popular to identify singular diseases, access to robust models for identifying multiple diseases and segmenting lesion areas for severity estimation under field conditions remain unsolved. In this study, a custom dataset consisting of handheld images of corn leaves infected with Gray Leaf Spot (GLS), Northern Leaf Blight (NLB), and Northern Leaf Spot (NLS) diseases, acquired under field conditions, was used to develop a novel two-stage semantic segmentation approach for identifying corn diseases and estimate their severity. Three semantic segmentation models were trained for each stage using SegNet, UNet, and DeepLabV3+ network architectures. Stage one used semantic segmentation to extract leaves from complex field backgrounds. In stage two, semantic segmentation was used to locate, identify, and calculate area coverage for disease lesions. After the models were trained, the best performance for stage one was observed from the UNet model, which achieved up to 0.9422 mean weighted intersection over union (mwIoU) and 0.8063 mean boundary F1-score (mBFScore). The best performance for stage two was observed from the DeepLabV3+ model, which could identify the disease lesions with a mwIoU of 0.7379 and mBFScore of 0.5351. Finally, severity was estimated by calculating the percentage of leaf area covered by disease lesions. In the test set, an R2 value (coefficient of determination) of 0.96 was achieved, which denotes that the integrated (UNet-DeepLabV3+) model predicted the severity of three diseases very close to the actual observations. This study developed a novel two-stage deep learning-based approach to accurately identify three targeted corn diseases and estimate their severity to pave the way for developing a field-worthy disease management system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CC001发布了新的文献求助10
1秒前
2秒前
3秒前
小慧应助爱听歌笑寒采纳,获得10
5秒前
5秒前
星期日不上发条完成签到,获得积分10
6秒前
6秒前
Daisykiller应助彩色的涵柳采纳,获得10
6秒前
科研通AI2S应助枯藤老柳树采纳,获得10
7秒前
科研小风发布了新的文献求助10
8秒前
sum.wang发布了新的文献求助10
8秒前
韩涵发布了新的文献求助10
8秒前
科目三应助风语村采纳,获得10
9秒前
10秒前
yang发布了新的文献求助10
11秒前
gabee完成签到 ,获得积分10
11秒前
平常的问雁完成签到 ,获得积分10
11秒前
晨曦完成签到 ,获得积分10
12秒前
susususu发布了新的文献求助10
12秒前
mrking完成签到,获得积分10
14秒前
开心向真发布了新的文献求助10
15秒前
18秒前
wbb的科研发布了新的文献求助10
19秒前
20秒前
瀛寰完成签到,获得积分20
21秒前
ywj完成签到,获得积分10
22秒前
明理迎曼发布了新的文献求助10
23秒前
科研通AI2S应助VDC采纳,获得10
24秒前
24秒前
zho发布了新的文献求助10
24秒前
26秒前
科研小白完成签到,获得积分10
26秒前
27秒前
852应助doctorW采纳,获得10
28秒前
28秒前
30秒前
wangchangwu发布了新的文献求助10
32秒前
斯文败类应助zcl采纳,获得10
33秒前
ywj发布了新的文献求助10
33秒前
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673054
求助须知:如何正确求助?哪些是违规求助? 3229031
关于积分的说明 9783312
捐赠科研通 2939378
什么是DOI,文献DOI怎么找? 1611028
邀请新用户注册赠送积分活动 760771
科研通“疑难数据库(出版商)”最低求助积分说明 736242