多路复用
领域(数学)
极化(电化学)
传输(电信)
光场
联轴节(管道)
计算机科学
材料科学
物理
纳米技术
电信
电磁场
化学
数学
物理化学
量子力学
纯数学
冶金
作者
Wenwei Liu,Zhancheng Li,Muhammad Afnan Ansari,Hua Cheng,Jianguo Tian,Xianzhong Chen,Shuqi Chen
标识
DOI:10.1002/adma.202208884
摘要
Abstract Recent rapid progress in metasurfaces is underpinned by the physics of local and nonlocal resonances and the modes coupling among them, leading to tremendous applications such as optical switching, information transmission, and sensing. In this review paper, an overview of the recent advances in a broad range of dimensional optical field manipulation based on metasurfaces categorized into different classes based on design strategies is provided. This review starts from the near‐field optical resonances of artificial nanostructures and discusses the far‐field optical wave manipulation based on fundamental mechanisms such as mode generation and mode coupling. The recent advances in optical field manipulation based on metasurfaces in different optical dimensions such as phase and polarization are summarized, and newly‐developed dimensions such as the orbital angular momentum and the coherence dimensions resulting from phase modulation are discussed. Then, the recent achievements of multiplexing and multifunctional metasurfaces empowered by multidimensional optical field manipulation for optical information transmission and integrated applications are reviewed. Finally, the paper concludes with a few perspectives on emerging trends, possible directions, and existing challenges in this fast‐developing field.
科研通智能强力驱动
Strongly Powered by AbleSci AI