生物
转录组
不育
细胞质雄性不育
代谢组学
基因
基因表达
植物
细胞生物学
遗传学
生物信息学
作者
Xianlong Ding,Jianrong Guo,Menglin Lv,Hongjie Wang,Ying Sheng,Ying Liu,Junyi Gai,Shouping Yang
摘要
High-temperature (HT) stress at flowering stage causes significant damage to soybean, including pollen abortion and fertilization failure, but few genes involved in male fertility regulation under HT stress in soybean have been characterized. Here, we demonstrated that miR156b-GmSPL2b module involved in male fertility regulation of soybean cytoplasmic male sterility (CMS)-based restorer line under HT stress. Overexpression of miR156b decreased male fertility in soybean CMS-based restorer line and its hybrid F1 with CMS line under HT stress. RNA-seq analysis found that miR156b mediated male fertility regulation in soybean under HT stress by regulating the expression of pollen development and HT response related genes. Metabolomic analysis of miR156bOE revealed reduction in flavonoid content under HT stress. Integrated transcriptomic and metabolomic analysis showed that the overexpression of miR156b caused flavonoid metabolism disorder in soybean flower bud under HT stress. Knockout of GmSPL2b also decreased the thermotolerance of soybean CMS-based restorer line during flowering. Moreover, GmSPL2b turned out to be directly bounded to the promoter of GmHSFA6b. Further verification indicated that GmHSFA6b overexpression enhanced HT tolerance in Arabidopsis during flowering. Substance content and gene expression analysis revealed that miR156b-GmSPL2b may mediate reactive oxygen species clearance by regulating flavonoid metabolism, thus participating in the regulation of male fertility in soybean under HT stress. This study not only provided important progress for understanding the molecular mechanism of miR156b-GmSPL2b regulating the male fertility of soybean CMS-based restorer line under HT stress, but also provided genetic resources and theoretical basis for creating HT-tolerant strong restorer lines.
科研通智能强力驱动
Strongly Powered by AbleSci AI