光谱密度
多元统计
三角函数
随机过程
概率密度函数
振幅
统计物理学
随机振动
数学
系列(地层学)
协方差矩阵
数学分析
算法
几何学
物理
地质学
统计
声学
光学
振动
古生物学
作者
Masanobu Shinozuka,C.-M. Jan
标识
DOI:10.1016/0022-460x(72)90600-1
摘要
Efficient methods are presented for digital simulation of a general homogeneous process (multidimensional or multivariate or multivariate-multidimensional) as a series of cosine functions with weighted amplitudes, almost evenly spaced frequencies, and random phase angles. The approach is also extended to the simulation of a general non-homogeneous oscillatory process characterized by an evolutionary power spectrum. Generalized forces involved in the modal analysis of linear or non-linear structures can be efficiently simulated as a multivariate process using the cross-spectral density matrix computed from the spectral density function of the multidimensional excitation process. Possible applications include simulation of (i) wind-induced ocean wave elevation, (ii) spatial random variation of material properties, (iii) the fluctuating part of atmospheric wind velocities and (iv) random surface roughness of highways and airport runways.
科研通智能强力驱动
Strongly Powered by AbleSci AI