亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mining interesting locations and travel sequences from GPS trajectories

全球定位系统 序列模式挖掘 GPS信号 数据挖掘 位置数据 弹道
作者
Yu Zheng,Lizhu Zhang,Xing Xie,Wei-Ying Ma
出处
期刊:The Web Conference 卷期号:: 791-800 被引量:1450
标识
DOI:10.1145/1526709.1526816
摘要

The increasing availability of GPS-enabled devices is changing the way people interact with the Web, and brings us a large amount of GPS trajectories representing people's location histories. In this paper, based on multiple users' GPS trajectories, we aim to mine interesting locations and classical travel sequences in a given geospatial region. Here, interesting locations mean the culturally important places, such as Tiananmen Square in Beijing, and frequented public areas, like shopping malls and restaurants, etc. Such information can help users understand surrounding locations, and would enable travel recommendation. In this work, we first model multiple individuals' location histories with a tree-based hierarchical graph (TBHG). Second, based on the TBHG, we propose a HITS (Hypertext Induced Topic Search)-based inference model, which regards an individual's access on a location as a directed link from the user to that location. This model infers the interest of a location by taking into account the following three factors. 1) The interest of a location depends on not only the number of users visiting this location but also these users' travel experiences. 2) Users' travel experiences and location interests have a mutual reinforcement relationship. 3) The interest of a location and the travel experience of a user are relative values and are region-related. Third, we mine the classical travel sequences among locations considering the interests of these locations and users' travel experiences. We evaluated our system using a large GPS dataset collected by 107 users over a period of one year in the real world. As a result, our HITS-based inference model outperformed baseline approaches like rank-by-count and rank-by-frequency. Meanwhile, when considering the users' travel experiences and location interests, we achieved a better performance beyond baselines, such as rank-by-count and rank-by-interest, etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
30秒前
ytx发布了新的文献求助10
50秒前
56秒前
一城烟雨发布了新的文献求助10
1分钟前
1分钟前
一城烟雨完成签到,获得积分10
1分钟前
诚心的信封完成签到 ,获得积分10
1分钟前
科研通AI5应助入门的橙橙采纳,获得10
1分钟前
科研那些年完成签到,获得积分10
1分钟前
2分钟前
文文发布了新的文献求助10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
隐形曼青应助迪丽盐巴采纳,获得10
2分钟前
yingying完成签到 ,获得积分10
2分钟前
万能图书馆应助ytx采纳,获得10
3分钟前
3分钟前
3分钟前
迪丽盐巴发布了新的文献求助10
3分钟前
科研通AI5应助废柴采纳,获得10
3分钟前
3分钟前
迪丽盐巴完成签到,获得积分10
3分钟前
ytx发布了新的文献求助10
3分钟前
3分钟前
xinxin发布了新的文献求助10
3分钟前
3分钟前
废柴发布了新的文献求助10
3分钟前
完美世界应助xinxin采纳,获得30
3分钟前
己凡发布了新的文献求助10
3分钟前
一路微笑完成签到,获得积分10
3分钟前
3分钟前
3分钟前
卓初露完成签到 ,获得积分10
4分钟前
搜集达人应助ytx采纳,获得10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
4分钟前
ytx发布了新的文献求助10
4分钟前
天才小能喵完成签到 ,获得积分0
4分钟前
毓雅完成签到,获得积分10
4分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491339
求助须知:如何正确求助?哪些是违规求助? 3077926
关于积分的说明 9151235
捐赠科研通 2770492
什么是DOI,文献DOI怎么找? 1520508
邀请新用户注册赠送积分活动 704589
科研通“疑难数据库(出版商)”最低求助积分说明 702298