飞秒
激光器
光学
微秒
激发
材料科学
原子物理学
物理
量子力学
作者
James Michael,Matthew R. Edwards,Arthur Dogariu,Richard B. Miles
出处
期刊:Applied optics
[The Optical Society]
日期:2011-09-08
卷期号:50 (26): 5158-5158
被引量:200
摘要
Time-accurate velocity measurements in unseeded air are made by tagging nitrogen with a femtosecond-duration laser pulse and monitoring the displacement of the molecules with a time-delayed, fast-gated camera. Centimeter-long lines are written through the focal region of a ∼1 mJ, 810 nm laser and are produced by nonlinear excitation and dissociation of nitrogen. Negligible heating is associated with this interaction. The emission arises from recombining nitrogen atoms and lasts for tens of microseconds in natural air. It falls into the 560 to 660 nm spectral region and consists of multiple spectral lines associated with first positive nitrogen transitions. The feasibility of this concept is demonstrated with lines written across a free jet, yielding instantaneous and averaged velocity profiles. The use of high-intensity femtosecond pulses for flow tagging allows the accurate determination of velocity profiles with a single laser system and camera.
科研通智能强力驱动
Strongly Powered by AbleSci AI