Probabilistic risk assessment of tunneling-induced damage to existing properties

计算机科学 鉴定(生物学) 概率逻辑 风险分析(工程) 因果关系 风险评估 贝叶斯网络 相关性(法律) 概率风险评估 数据挖掘 机器学习 人工智能 计算机安全 业务 法学 生物 植物 政治学
作者
Fan Wang,Lieyun Ding,Huiwen Luo,Peter E.D. Love
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:41 (4): 951-961 被引量:47
标识
DOI:10.1016/j.eswa.2013.06.062
摘要

There is an intrinsic risk associated with tunnel construction, particularly in urban areas where a number of third party persons and properties are involved. Due to the limited availability of data for accidents and the complexity associated with their causation, it is therefore necessary to combine available historical data and expert judgment to consider all relevant factors to undertake a realistic risk analysis. Thus, this paper presents a hybrid approach that can be used to undertake a probabilistic risk assessment of the risks associated with tunneling and its likelihood to damage to existing properties using the techniques of Bayesian Networks (BN) and a Relevance Vector Machine (RVM). A causal framework that integrates the techniques is also proposed to facilitate the development of the proposed model. The developed risk model is applied to a real tunnel construction project in Wuhan, China. The results derived from the project demonstrated the model’s ability to accurately assess risks during tunneling, specifically the identification of accident scenarios and the quantification of the probability and severity of possible accidents. The potential of this risk model to be used as a decision-making support tool was also explored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助现在就去看文献采纳,获得10
刚刚
2秒前
qialiu完成签到,获得积分10
3秒前
干净的从梦完成签到,获得积分10
3秒前
3秒前
3秒前
华仔应助强健的月饼采纳,获得10
4秒前
daijunhan完成签到,获得积分10
4秒前
4秒前
桐桐应助傻瓜子采纳,获得10
6秒前
PHW完成签到,获得积分10
7秒前
zz完成签到,获得积分20
7秒前
miao完成签到,获得积分10
8秒前
8秒前
ceeray23应助hhhhhhhh采纳,获得10
9秒前
完美世界应助hhhhhhhh采纳,获得10
9秒前
Karol发布了新的文献求助10
9秒前
10秒前
NexusExplorer应助卡皮巴拉采纳,获得10
11秒前
顾矜应助球闪采纳,获得10
11秒前
13秒前
13秒前
弄啥嘞昂应助QR采纳,获得10
14秒前
上官若男应助QR采纳,获得10
14秒前
毛豆应助QR采纳,获得10
14秒前
orixero应助QR采纳,获得10
14秒前
隐形曼青应助卡皮巴拉采纳,获得10
16秒前
17秒前
伊酒应助zz采纳,获得10
18秒前
夜捕白日梦完成签到,获得积分10
18秒前
小番茄完成签到,获得积分10
19秒前
20秒前
科研小能手完成签到 ,获得积分10
21秒前
22秒前
爱哭的小女孩完成签到,获得积分20
23秒前
橙子发布了新的文献求助10
24秒前
灵巧书本完成签到,获得积分20
25秒前
小陈发布了新的文献求助10
27秒前
zhongzhong发布了新的文献求助10
30秒前
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459121
求助须知:如何正确求助?哪些是违规求助? 3053676
关于积分的说明 9037638
捐赠科研通 2742926
什么是DOI,文献DOI怎么找? 1504571
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694605