OpenSim: a musculoskeletal modeling and simulation framework for in silico investigations and exchange

计算机科学 杠杆(统计) 建模与仿真 软件 模拟 运动学 人机交互 软件工程 人工智能 经典力学 物理 程序设计语言
作者
Ajay Seth,Michael Sherman,Jeffrey A. Reinbolt,Scott L. Delp
出处
期刊:Procedia IUTAM [Elsevier]
卷期号:2: 212-232 被引量:285
标识
DOI:10.1016/j.piutam.2011.04.021
摘要

Movement science is driven by observation, but observation alone cannot elucidate principles of human and animal movement. Biomechanical modeling and computer simulation complement observations and inform experimental design. Biological models are complex and specialized software is required for building, validating, and studying them. Furthermore, common access is needed so that investigators can contribute models to a broader community and leverage past work. We are developing OpenSim, a freely available musculoskeletal modeling and simulation application and libraries specialized for these purposes, by providing: musculoskeletal modeling elements, such as biomechanical joints, muscle actuators, ligament forces, compliant contact, and controllers; and tools for fitting generic models to subject-specific data, performing inverse kinematics and forward dynamic simulations. OpenSim performs an array of physics-based analyses to delve into the behavior of musculoskeletal models by employing Simbody, an efficient and accurate multibody system dynamics code. Models are publicly available and are often reused for multiple investigations because they provide a rich set of behaviors that enables different lines of inquiry. This report will discuss one model developed to study walking and applied to gain deeper insights into muscle function in pathological gait and during running. We then illustrate how simulations can test fundamental hypotheses and focus the aims of in vivo experiments, with a postural stability platform and human model that provide a research environment for performing human posture experiments in silico. We encourage wide adoption of OpenSim for community exchange of biomechanical models and methods and welcome new contributors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱静静应助DHL采纳,获得10
刚刚
刚刚
sunny661104完成签到 ,获得积分10
1秒前
简单完成签到 ,获得积分10
1秒前
尘林发布了新的文献求助10
1秒前
Z-先森完成签到,获得积分0
2秒前
苏源智发布了新的文献求助10
2秒前
伯赏诗霜完成签到,获得积分10
3秒前
NN应助LIn采纳,获得10
4秒前
4秒前
超级无敌学术苦瓜完成签到,获得积分10
4秒前
4秒前
Zn应助111采纳,获得10
5秒前
舒适静丹完成签到,获得积分10
6秒前
丽颖发布了新的文献求助10
7秒前
cui完成签到,获得积分10
7秒前
lixm完成签到,获得积分10
7秒前
yyyyy语言完成签到,获得积分10
7秒前
栗子完成签到,获得积分10
8秒前
卧镁铀钳完成签到 ,获得积分10
9秒前
DHL完成签到,获得积分10
10秒前
TT发布了新的文献求助10
10秒前
小蘑菇应助科研通管家采纳,获得30
11秒前
terence应助科研通管家采纳,获得30
11秒前
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
Akim应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
12秒前
害怕的小玉完成签到,获得积分10
12秒前
13秒前
16秒前
梦里花落知多少完成签到,获得积分10
16秒前
17秒前
阳阳发布了新的文献求助10
17秒前
Poyd发布了新的文献求助10
19秒前
开开完成签到,获得积分10
19秒前
tao_blue发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849