OpenSim: a musculoskeletal modeling and simulation framework for in silico investigations and exchange

计算机科学 杠杆(统计) 建模与仿真 软件 模拟 运动学 人机交互 软件工程 人工智能 经典力学 物理 程序设计语言
作者
Ajay Seth,Michael Sherman,Jeffrey A. Reinbolt,Scott L. Delp
出处
期刊:Procedia IUTAM [Elsevier]
卷期号:2: 212-232 被引量:285
标识
DOI:10.1016/j.piutam.2011.04.021
摘要

Movement science is driven by observation, but observation alone cannot elucidate principles of human and animal movement. Biomechanical modeling and computer simulation complement observations and inform experimental design. Biological models are complex and specialized software is required for building, validating, and studying them. Furthermore, common access is needed so that investigators can contribute models to a broader community and leverage past work. We are developing OpenSim, a freely available musculoskeletal modeling and simulation application and libraries specialized for these purposes, by providing: musculoskeletal modeling elements, such as biomechanical joints, muscle actuators, ligament forces, compliant contact, and controllers; and tools for fitting generic models to subject-specific data, performing inverse kinematics and forward dynamic simulations. OpenSim performs an array of physics-based analyses to delve into the behavior of musculoskeletal models by employing Simbody, an efficient and accurate multibody system dynamics code. Models are publicly available and are often reused for multiple investigations because they provide a rich set of behaviors that enables different lines of inquiry. This report will discuss one model developed to study walking and applied to gain deeper insights into muscle function in pathological gait and during running. We then illustrate how simulations can test fundamental hypotheses and focus the aims of in vivo experiments, with a postural stability platform and human model that provide a research environment for performing human posture experiments in silico. We encourage wide adoption of OpenSim for community exchange of biomechanical models and methods and welcome new contributors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
磕学家发布了新的文献求助10
刚刚
zzzz完成签到,获得积分10
1秒前
Conran发布了新的文献求助10
2秒前
思源应助景景采纳,获得10
2秒前
华仔应助王青青采纳,获得10
2秒前
杨杨杨发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
5秒前
5秒前
科目三应助tkdzjr12345采纳,获得10
5秒前
luke发布了新的文献求助10
6秒前
7秒前
小猫爬楼梯完成签到,获得积分10
7秒前
大气季节发布了新的文献求助10
7秒前
iuun发布了新的文献求助10
7秒前
小柒发布了新的文献求助10
8秒前
8秒前
TKMY发布了新的文献求助10
8秒前
脑洞疼应助外向的慕灵采纳,获得10
10秒前
天天快乐应助顺心的定帮采纳,获得10
10秒前
11秒前
Henry应助medicljk采纳,获得200
12秒前
12秒前
13秒前
14秒前
luke完成签到,获得积分10
14秒前
Akim应助木槿花采纳,获得10
14秒前
景景发布了新的文献求助10
17秒前
tkdzjr12345发布了新的文献求助10
18秒前
科研小班发布了新的文献求助10
19秒前
王青青发布了新的文献求助10
19秒前
最强魔神完成签到,获得积分0
20秒前
1234发布了新的文献求助10
23秒前
23秒前
文静千凡完成签到,获得积分10
24秒前
大肘子发布了新的文献求助30
24秒前
duoduo7发布了新的文献求助10
24秒前
杨杨杨完成签到,获得积分10
25秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218457
求助须知:如何正确求助?哪些是违规求助? 2867704
关于积分的说明 8157719
捐赠科研通 2534685
什么是DOI,文献DOI怎么找? 1367140
科研通“疑难数据库(出版商)”最低求助积分说明 644934
邀请新用户注册赠送积分活动 618123