OpenSim: a musculoskeletal modeling and simulation framework for in silico investigations and exchange

计算机科学 杠杆(统计) 建模与仿真 软件 模拟 运动学 人机交互 软件工程 人工智能 经典力学 物理 程序设计语言
作者
Ajay Seth,Michael Sherman,Jeffrey A. Reinbolt,Scott L. Delp
出处
期刊:Procedia IUTAM [Elsevier]
卷期号:2: 212-232 被引量:285
标识
DOI:10.1016/j.piutam.2011.04.021
摘要

Movement science is driven by observation, but observation alone cannot elucidate principles of human and animal movement. Biomechanical modeling and computer simulation complement observations and inform experimental design. Biological models are complex and specialized software is required for building, validating, and studying them. Furthermore, common access is needed so that investigators can contribute models to a broader community and leverage past work. We are developing OpenSim, a freely available musculoskeletal modeling and simulation application and libraries specialized for these purposes, by providing: musculoskeletal modeling elements, such as biomechanical joints, muscle actuators, ligament forces, compliant contact, and controllers; and tools for fitting generic models to subject-specific data, performing inverse kinematics and forward dynamic simulations. OpenSim performs an array of physics-based analyses to delve into the behavior of musculoskeletal models by employing Simbody, an efficient and accurate multibody system dynamics code. Models are publicly available and are often reused for multiple investigations because they provide a rich set of behaviors that enables different lines of inquiry. This report will discuss one model developed to study walking and applied to gain deeper insights into muscle function in pathological gait and during running. We then illustrate how simulations can test fundamental hypotheses and focus the aims of in vivo experiments, with a postural stability platform and human model that provide a research environment for performing human posture experiments in silico. We encourage wide adoption of OpenSim for community exchange of biomechanical models and methods and welcome new contributors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
在水一方应助HCT采纳,获得10
1秒前
hhl完成签到,获得积分10
1秒前
1秒前
Eukarya完成签到,获得积分10
1秒前
勿忘9451发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
zzz完成签到,获得积分10
3秒前
清脆苑博发布了新的文献求助10
3秒前
xuxuux完成签到,获得积分10
3秒前
4秒前
cc发布了新的文献求助10
4秒前
4秒前
ceeray23应助薄荷喵采纳,获得10
4秒前
在水一方应助小宇采纳,获得10
5秒前
4149发布了新的文献求助10
5秒前
5秒前
6秒前
无极微光应助123456采纳,获得20
7秒前
夕寸发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
英姑应助七点半采纳,获得10
8秒前
LYP发布了新的文献求助10
8秒前
8秒前
充电宝应助星星采纳,获得10
8秒前
刘海婷完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
10秒前
黄东胜发布了新的文献求助10
10秒前
现代rong发布了新的文献求助10
10秒前
落后醉易发布了新的文献求助10
10秒前
星辰大海应助cassie采纳,获得10
10秒前
小贝完成签到,获得积分10
10秒前
11秒前
英俊的问夏应助RENFF采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836