Bayesian model selection for group studies

贝叶斯因子 频数推理 贝叶斯分层建模 Dirichlet分布 选型 贝叶斯概率 先验概率 贝叶斯推理 数学 计算机科学 贝叶斯定理 人工智能 机器学习 统计 数学分析 边值问题
作者
Klaas Ε. Stephan,W.D. Penny,Jean Daunizeau,Rosalyn Moran,Karl Friston
出处
期刊:NeuroImage [Elsevier]
卷期号:46 (4): 1004-1017 被引量:1359
标识
DOI:10.1016/j.neuroimage.2009.03.025
摘要

Bayesian model selection (BMS) is a powerful method for determining the most likely among a set of competing hypotheses about the mechanisms that generated observed data. BMS has recently found widespread application in neuroimaging, particularly in the context of dynamic causal modelling (DCM). However, so far, combining BMS results from several subjects has relied on simple (fixed effects) metrics, e.g. the group Bayes factor (GBF), that do not account for group heterogeneity or outliers. In this paper, we compare the GBF with two random effects methods for BMS at the between-subject or group level. These methods provide inference on model-space using a classical and Bayesian perspective respectively. First, a classical (frequentist) approach uses the log model evidence as a subject-specific summary statistic. This enables one to use analysis of variance to test for differences in log-evidences over models, relative to inter-subject differences. We then consider the same problem in Bayesian terms and describe a novel hierarchical model, which is optimised to furnish a probability density on the models themselves. This new variational Bayes method rests on treating the model as a random variable and estimating the parameters of a Dirichlet distribution which describes the probabilities for all models considered. These probabilities then define a multinomial distribution over model space, allowing one to compute how likely it is that a specific model generated the data of a randomly chosen subject as well as the exceedance probability of one model being more likely than any other model. Using empirical and synthetic data, we show that optimising a conditional density of the model probabilities, given the log-evidences for each model over subjects, is more informative and appropriate than both the GBF and frequentist tests of the log-evidences. In particular, we found that the hierarchical Bayesian approach is considerably more robust than either of the other approaches in the presence of outliers. We expect that this new random effects method will prove useful for a wide range of group studies, not only in the context of DCM, but also for other modelling endeavours, e.g. comparing different source reconstruction methods for EEG/MEG or selecting among competing computational models of learning and decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_89mvO8完成签到,获得积分10
刚刚
阳光的丹雪完成签到,获得积分10
1秒前
1秒前
黄文龙发布了新的文献求助10
2秒前
2秒前
lixm发布了新的文献求助10
4秒前
vergegung关注了科研通微信公众号
4秒前
超级哑铃完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
HAI发布了新的文献求助10
5秒前
5秒前
汉堡包应助清新的烤鸡采纳,获得30
5秒前
6秒前
6秒前
林子青发布了新的文献求助20
6秒前
6秒前
bobopoi发布了新的文献求助10
7秒前
柚C美式完成签到 ,获得积分10
7秒前
8秒前
9秒前
红糖发糕完成签到 ,获得积分10
10秒前
风趣白秋发布了新的文献求助10
11秒前
apathy发布了新的文献求助10
12秒前
12秒前
llll完成签到,获得积分10
12秒前
12秒前
淡然天问发布了新的文献求助30
12秒前
朱事顺利完成签到,获得积分10
12秒前
13秒前
MailkMonk发布了新的文献求助10
13秒前
14秒前
chua1212123发布了新的文献求助10
15秒前
斯文败类应助欧阳采纳,获得10
16秒前
小科发布了新的文献求助10
16秒前
16秒前
17秒前
Alicia发布了新的文献求助200
17秒前
量子星尘发布了新的文献求助10
18秒前
fire发布了新的文献求助10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626820
求助须知:如何正确求助?哪些是违规求助? 4712727
关于积分的说明 14960335
捐赠科研通 4782760
什么是DOI,文献DOI怎么找? 2554542
邀请新用户注册赠送积分活动 1516181
关于科研通互助平台的介绍 1476457