已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Bayesian model selection for group studies

贝叶斯因子 频数推理 贝叶斯分层建模 Dirichlet分布 选型 贝叶斯概率 先验概率 贝叶斯推理 数学 计算机科学 贝叶斯定理 人工智能 机器学习 统计 数学分析 边值问题
作者
Klaas Ε. Stephan,W.D. Penny,Jean Daunizeau,Rosalyn Moran,Karl Friston
出处
期刊:NeuroImage [Elsevier]
卷期号:46 (4): 1004-1017 被引量:1359
标识
DOI:10.1016/j.neuroimage.2009.03.025
摘要

Bayesian model selection (BMS) is a powerful method for determining the most likely among a set of competing hypotheses about the mechanisms that generated observed data. BMS has recently found widespread application in neuroimaging, particularly in the context of dynamic causal modelling (DCM). However, so far, combining BMS results from several subjects has relied on simple (fixed effects) metrics, e.g. the group Bayes factor (GBF), that do not account for group heterogeneity or outliers. In this paper, we compare the GBF with two random effects methods for BMS at the between-subject or group level. These methods provide inference on model-space using a classical and Bayesian perspective respectively. First, a classical (frequentist) approach uses the log model evidence as a subject-specific summary statistic. This enables one to use analysis of variance to test for differences in log-evidences over models, relative to inter-subject differences. We then consider the same problem in Bayesian terms and describe a novel hierarchical model, which is optimised to furnish a probability density on the models themselves. This new variational Bayes method rests on treating the model as a random variable and estimating the parameters of a Dirichlet distribution which describes the probabilities for all models considered. These probabilities then define a multinomial distribution over model space, allowing one to compute how likely it is that a specific model generated the data of a randomly chosen subject as well as the exceedance probability of one model being more likely than any other model. Using empirical and synthetic data, we show that optimising a conditional density of the model probabilities, given the log-evidences for each model over subjects, is more informative and appropriate than both the GBF and frequentist tests of the log-evidences. In particular, we found that the hierarchical Bayesian approach is considerably more robust than either of the other approaches in the presence of outliers. We expect that this new random effects method will prove useful for a wide range of group studies, not only in the context of DCM, but also for other modelling endeavours, e.g. comparing different source reconstruction methods for EEG/MEG or selecting among competing computational models of learning and decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
peng发布了新的文献求助10
1秒前
树风发布了新的文献求助10
2秒前
syleaf完成签到 ,获得积分10
3秒前
lh23发布了新的文献求助10
3秒前
4秒前
Da You完成签到 ,获得积分10
4秒前
6秒前
姜忆霜发布了新的文献求助10
6秒前
Tree_发布了新的文献求助10
10秒前
11秒前
坚定珩发布了新的文献求助10
12秒前
13秒前
13秒前
16秒前
殴打阿达发布了新的文献求助150
16秒前
华仔应助asdqweqwe采纳,获得10
16秒前
Mia发布了新的文献求助10
16秒前
时尚以亦发布了新的文献求助30
19秒前
19秒前
19秒前
22秒前
24秒前
充电宝应助宁人采纳,获得10
24秒前
25秒前
lh23完成签到,获得积分10
25秒前
打打应助Why采纳,获得10
27秒前
繁荣的元灵应助活泼送终采纳,获得10
27秒前
小二郎应助Mia采纳,获得10
28秒前
小邸发布了新的文献求助10
28秒前
烟花应助忧郁的鱿鱼采纳,获得10
29秒前
所所应助yuanyuan采纳,获得10
29秒前
lemonyu发布了新的文献求助10
30秒前
走走发布了新的文献求助10
30秒前
30秒前
坚定珩发布了新的文献求助10
30秒前
31秒前
科研通AI6应助第五元素采纳,获得10
31秒前
田様应助自觉的溪灵采纳,获得10
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599474
求助须知:如何正确求助?哪些是违规求助? 4685116
关于积分的说明 14837894
捐赠科研通 4668470
什么是DOI,文献DOI怎么找? 2537994
邀请新用户注册赠送积分活动 1505428
关于科研通互助平台的介绍 1470784