Bayesian model selection for group studies

贝叶斯因子 频数推理 贝叶斯分层建模 Dirichlet分布 选型 贝叶斯概率 先验概率 贝叶斯推理 数学 计算机科学 贝叶斯定理 人工智能 机器学习 统计 数学分析 边值问题
作者
Klaas Ε. Stephan,W.D. Penny,Jean Daunizeau,Rosalyn Moran,Karl Friston
出处
期刊:NeuroImage [Elsevier]
卷期号:46 (4): 1004-1017 被引量:1359
标识
DOI:10.1016/j.neuroimage.2009.03.025
摘要

Bayesian model selection (BMS) is a powerful method for determining the most likely among a set of competing hypotheses about the mechanisms that generated observed data. BMS has recently found widespread application in neuroimaging, particularly in the context of dynamic causal modelling (DCM). However, so far, combining BMS results from several subjects has relied on simple (fixed effects) metrics, e.g. the group Bayes factor (GBF), that do not account for group heterogeneity or outliers. In this paper, we compare the GBF with two random effects methods for BMS at the between-subject or group level. These methods provide inference on model-space using a classical and Bayesian perspective respectively. First, a classical (frequentist) approach uses the log model evidence as a subject-specific summary statistic. This enables one to use analysis of variance to test for differences in log-evidences over models, relative to inter-subject differences. We then consider the same problem in Bayesian terms and describe a novel hierarchical model, which is optimised to furnish a probability density on the models themselves. This new variational Bayes method rests on treating the model as a random variable and estimating the parameters of a Dirichlet distribution which describes the probabilities for all models considered. These probabilities then define a multinomial distribution over model space, allowing one to compute how likely it is that a specific model generated the data of a randomly chosen subject as well as the exceedance probability of one model being more likely than any other model. Using empirical and synthetic data, we show that optimising a conditional density of the model probabilities, given the log-evidences for each model over subjects, is more informative and appropriate than both the GBF and frequentist tests of the log-evidences. In particular, we found that the hierarchical Bayesian approach is considerably more robust than either of the other approaches in the presence of outliers. We expect that this new random effects method will prove useful for a wide range of group studies, not only in the context of DCM, but also for other modelling endeavours, e.g. comparing different source reconstruction methods for EEG/MEG or selecting among competing computational models of learning and decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xw完成签到,获得积分10
刚刚
刚刚
Danielle完成签到,获得积分10
1秒前
1秒前
领导范儿应助南宫誉采纳,获得10
1秒前
皮蛋robin汤完成签到 ,获得积分10
2秒前
走远了完成签到,获得积分10
2秒前
友好冥王星完成签到 ,获得积分10
3秒前
xxLin完成签到,获得积分10
3秒前
纠纠完成签到,获得积分10
3秒前
小确幸完成签到,获得积分10
4秒前
LC发布了新的文献求助10
4秒前
小趴菜发布了新的文献求助10
4秒前
5秒前
爆米花应助周舟采纳,获得10
6秒前
xudonghui发布了新的文献求助10
6秒前
种桃老总完成签到,获得积分10
6秒前
hhf完成签到,获得积分10
6秒前
负责的中道完成签到,获得积分10
6秒前
故城完成签到 ,获得积分10
7秒前
zzw发布了新的文献求助10
7秒前
cream完成签到,获得积分10
8秒前
橘子郡女孩完成签到,获得积分10
9秒前
wenruo完成签到 ,获得积分10
9秒前
10秒前
贺飞风完成签到,获得积分10
10秒前
赘婿应助yyy采纳,获得10
11秒前
JamesPei应助玩命的鱼采纳,获得10
12秒前
calm完成签到 ,获得积分10
12秒前
风的季节完成签到,获得积分10
12秒前
13秒前
FashionBoy应助阿宁采纳,获得10
13秒前
格格巫完成签到,获得积分10
13秒前
研友_nxy9XZ发布了新的文献求助10
14秒前
xiax03完成签到,获得积分10
15秒前
罗元正完成签到 ,获得积分10
15秒前
CC完成签到,获得积分10
15秒前
15秒前
222完成签到,获得积分10
15秒前
madison发布了新的文献求助30
16秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142960
求助须知:如何正确求助?哪些是违规求助? 2793911
关于积分的说明 7808759
捐赠科研通 2450220
什么是DOI,文献DOI怎么找? 1303729
科研通“疑难数据库(出版商)”最低求助积分说明 627055
版权声明 601356