亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bayesian model selection for group studies

贝叶斯因子 频数推理 贝叶斯分层建模 Dirichlet分布 选型 贝叶斯概率 先验概率 贝叶斯推理 数学 计算机科学 贝叶斯定理 人工智能 机器学习 统计 数学分析 边值问题
作者
Klaas Ε. Stephan,W.D. Penny,Jean Daunizeau,Rosalyn Moran,Karl Friston
出处
期刊:NeuroImage [Elsevier BV]
卷期号:46 (4): 1004-1017 被引量:1359
标识
DOI:10.1016/j.neuroimage.2009.03.025
摘要

Bayesian model selection (BMS) is a powerful method for determining the most likely among a set of competing hypotheses about the mechanisms that generated observed data. BMS has recently found widespread application in neuroimaging, particularly in the context of dynamic causal modelling (DCM). However, so far, combining BMS results from several subjects has relied on simple (fixed effects) metrics, e.g. the group Bayes factor (GBF), that do not account for group heterogeneity or outliers. In this paper, we compare the GBF with two random effects methods for BMS at the between-subject or group level. These methods provide inference on model-space using a classical and Bayesian perspective respectively. First, a classical (frequentist) approach uses the log model evidence as a subject-specific summary statistic. This enables one to use analysis of variance to test for differences in log-evidences over models, relative to inter-subject differences. We then consider the same problem in Bayesian terms and describe a novel hierarchical model, which is optimised to furnish a probability density on the models themselves. This new variational Bayes method rests on treating the model as a random variable and estimating the parameters of a Dirichlet distribution which describes the probabilities for all models considered. These probabilities then define a multinomial distribution over model space, allowing one to compute how likely it is that a specific model generated the data of a randomly chosen subject as well as the exceedance probability of one model being more likely than any other model. Using empirical and synthetic data, we show that optimising a conditional density of the model probabilities, given the log-evidences for each model over subjects, is more informative and appropriate than both the GBF and frequentist tests of the log-evidences. In particular, we found that the hierarchical Bayesian approach is considerably more robust than either of the other approaches in the presence of outliers. We expect that this new random effects method will prove useful for a wide range of group studies, not only in the context of DCM, but also for other modelling endeavours, e.g. comparing different source reconstruction methods for EEG/MEG or selecting among competing computational models of learning and decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kuoping完成签到,获得积分0
18秒前
冷酷晓夏发布了新的文献求助100
1分钟前
1分钟前
澳澳发布了新的文献求助10
1分钟前
wwe完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI2S应助澳澳采纳,获得10
1分钟前
量子星尘发布了新的文献求助50
2分钟前
bkagyin应助冷酷晓夏采纳,获得10
2分钟前
learningu应助里昂义务采纳,获得50
2分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
2分钟前
科研通AI5应助要减肥中蓝采纳,获得10
2分钟前
正直电脑发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
xxxx完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
小陶发布了新的文献求助10
3分钟前
冷酷晓夏发布了新的文献求助10
3分钟前
里昂义务完成签到,获得积分10
4分钟前
李海艳完成签到 ,获得积分10
4分钟前
科研通AI5应助要减肥中蓝采纳,获得10
4分钟前
平常的乘云完成签到,获得积分10
4分钟前
小陶关注了科研通微信公众号
5分钟前
小陶关注了科研通微信公众号
5分钟前
bkagyin应助科研通管家采纳,获得10
5分钟前
石石夏完成签到,获得积分10
5分钟前
小陶关注了科研通微信公众号
5分钟前
科2研7通完成签到 ,获得积分10
5分钟前
5分钟前
科研通AI5应助科2研7通采纳,获得100
6分钟前
6分钟前
6分钟前
小陶完成签到,获得积分10
6分钟前
KKLUV发布了新的文献求助10
6分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5065294
求助须知:如何正确求助?哪些是违规求助? 4287907
关于积分的说明 13359472
捐赠科研通 4106653
什么是DOI,文献DOI怎么找? 2248734
邀请新用户注册赠送积分活动 1254288
关于科研通互助平台的介绍 1185939