清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Bayesian model selection for group studies

贝叶斯因子 频数推理 贝叶斯分层建模 Dirichlet分布 选型 贝叶斯概率 先验概率 贝叶斯推理 数学 计算机科学 贝叶斯定理 人工智能 机器学习 统计 数学分析 边值问题
作者
Klaas Ε. Stephan,W.D. Penny,Jean Daunizeau,Rosalyn Moran,Karl Friston
出处
期刊:NeuroImage [Elsevier BV]
卷期号:46 (4): 1004-1017 被引量:1359
标识
DOI:10.1016/j.neuroimage.2009.03.025
摘要

Bayesian model selection (BMS) is a powerful method for determining the most likely among a set of competing hypotheses about the mechanisms that generated observed data. BMS has recently found widespread application in neuroimaging, particularly in the context of dynamic causal modelling (DCM). However, so far, combining BMS results from several subjects has relied on simple (fixed effects) metrics, e.g. the group Bayes factor (GBF), that do not account for group heterogeneity or outliers. In this paper, we compare the GBF with two random effects methods for BMS at the between-subject or group level. These methods provide inference on model-space using a classical and Bayesian perspective respectively. First, a classical (frequentist) approach uses the log model evidence as a subject-specific summary statistic. This enables one to use analysis of variance to test for differences in log-evidences over models, relative to inter-subject differences. We then consider the same problem in Bayesian terms and describe a novel hierarchical model, which is optimised to furnish a probability density on the models themselves. This new variational Bayes method rests on treating the model as a random variable and estimating the parameters of a Dirichlet distribution which describes the probabilities for all models considered. These probabilities then define a multinomial distribution over model space, allowing one to compute how likely it is that a specific model generated the data of a randomly chosen subject as well as the exceedance probability of one model being more likely than any other model. Using empirical and synthetic data, we show that optimising a conditional density of the model probabilities, given the log-evidences for each model over subjects, is more informative and appropriate than both the GBF and frequentist tests of the log-evidences. In particular, we found that the hierarchical Bayesian approach is considerably more robust than either of the other approaches in the presence of outliers. We expect that this new random effects method will prove useful for a wide range of group studies, not only in the context of DCM, but also for other modelling endeavours, e.g. comparing different source reconstruction methods for EEG/MEG or selecting among competing computational models of learning and decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
菠萝包完成签到 ,获得积分10
33秒前
34秒前
mama完成签到 ,获得积分10
53秒前
共享精神应助科研通管家采纳,获得10
1分钟前
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助草木采纳,获得10
1分钟前
Lny发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
冬去春来完成签到 ,获得积分10
1分钟前
1分钟前
平常安雁完成签到 ,获得积分10
1分钟前
科研小狗完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
勤劳的颤完成签到 ,获得积分10
2分钟前
boymin2015完成签到 ,获得积分10
2分钟前
2分钟前
cadcae完成签到,获得积分10
2分钟前
2分钟前
hezi发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
hezi完成签到,获得积分10
3分钟前
4分钟前
胖小羊完成签到 ,获得积分10
4分钟前
may发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助hsiang采纳,获得10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
5分钟前
研友_VZG7GZ应助lameliu采纳,获得10
5分钟前
5分钟前
科研通AI2S应助研友_892kOL采纳,获得10
5分钟前
Delight关注了科研通微信公众号
6分钟前
Yolo完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960142
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128743
捐赠科研通 3238333
什么是DOI,文献DOI怎么找? 1789703
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803069