The LES model's role in jet noise

离散化 耗散系统 应用数学 背景(考古学) 解算器 大涡模拟 计算机科学 数学 统计物理学 数学分析 物理 数学优化 地质学 气象学 古生物学 湍流 量子力学
作者
Paul G. Tucker
出处
期刊:Progress in Aerospace Sciences [Elsevier]
卷期号:44 (6): 427-436 被引量:25
标识
DOI:10.1016/j.paerosci.2008.06.002
摘要

Problem definition, near wall modeling and other factors, including grid structure along with its implications on filter definition, are suggested to be of potentially greater importance for practical jet simulations than the LES (large eddy simulation) model. This latter element in itself can be theoretically questionable. When moving to realistic engine conditions, it is noted that disentangling numerical influences from the LES model's appear difficult and negates the model value with its omission potentially being beneficial. Evidence cited suggests that if using an LES model for jets, choosing the numerically best conditioned or the one the code has or, for a dissipative solver, even LES model omission seems sensible. This view point precludes combustion modeling. Tensors of additional derivatives, used in non-linear LES models, when expanded, can yield potentially several hundred interesting derivatives. It is suggested that the MILES (monotone-integrated LES) and LES communities should move towards seeing where modified equation derivatives connect with derivatives that appear in more state of the art non-linear LES models. Then the best features could be combined to form mixed MILES–LES models or even mixed MILES–LES–RANS models. Combustion modeling also presents hybridization potential but in a different context. Most MILES-modified equation analysis focus on the spatial discretization and not the temporal. However, with some codes the spatial discretization terms are deliberately constructed to cancel temporal truncation error terms. Hence, the two things work in harmony and the temporal discretization can make a strong impact on resolved scales.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
didiaonn完成签到,获得积分10
1秒前
LWWW12完成签到,获得积分10
1秒前
eric888应助科研通管家采纳,获得10
1秒前
SJJ应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
聪明凡之应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
王w应助科研通管家采纳,获得10
1秒前
香蕉诗蕊应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得30
1秒前
王w应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
eric888应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
SJJ应助科研通管家采纳,获得10
2秒前
2秒前
yang完成签到,获得积分10
3秒前
Agu完成签到,获得积分10
4秒前
求助人员发布了新的文献求助10
5秒前
徐立涛发布了新的文献求助10
7秒前
www发布了新的文献求助10
7秒前
meili完成签到,获得积分10
10秒前
格拉希尔完成签到,获得积分10
10秒前
阔达的马里奥完成签到 ,获得积分10
12秒前
abcd_1067完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
诗梦完成签到,获得积分10
14秒前
姬鲁宁完成签到 ,获得积分10
15秒前
www完成签到,获得积分10
15秒前
15秒前
风趣秋白完成签到,获得积分0
16秒前
17秒前
CN1681681发布了新的文献求助10
19秒前
wangcw完成签到 ,获得积分10
20秒前
汉堡包应助黄兆强采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604083
求助须知:如何正确求助?哪些是违规求助? 4688908
关于积分的说明 14856973
捐赠科研通 4696430
什么是DOI,文献DOI怎么找? 2541128
邀请新用户注册赠送积分活动 1507314
关于科研通互助平台的介绍 1471851