The LES model's role in jet noise

离散化 耗散系统 应用数学 背景(考古学) 解算器 大涡模拟 计算机科学 数学 统计物理学 数学分析 物理 数学优化 地质学 气象学 古生物学 湍流 量子力学
作者
Paul G. Tucker
出处
期刊:Progress in Aerospace Sciences [Elsevier]
卷期号:44 (6): 427-436 被引量:25
标识
DOI:10.1016/j.paerosci.2008.06.002
摘要

Problem definition, near wall modeling and other factors, including grid structure along with its implications on filter definition, are suggested to be of potentially greater importance for practical jet simulations than the LES (large eddy simulation) model. This latter element in itself can be theoretically questionable. When moving to realistic engine conditions, it is noted that disentangling numerical influences from the LES model's appear difficult and negates the model value with its omission potentially being beneficial. Evidence cited suggests that if using an LES model for jets, choosing the numerically best conditioned or the one the code has or, for a dissipative solver, even LES model omission seems sensible. This view point precludes combustion modeling. Tensors of additional derivatives, used in non-linear LES models, when expanded, can yield potentially several hundred interesting derivatives. It is suggested that the MILES (monotone-integrated LES) and LES communities should move towards seeing where modified equation derivatives connect with derivatives that appear in more state of the art non-linear LES models. Then the best features could be combined to form mixed MILES–LES models or even mixed MILES–LES–RANS models. Combustion modeling also presents hybridization potential but in a different context. Most MILES-modified equation analysis focus on the spatial discretization and not the temporal. However, with some codes the spatial discretization terms are deliberately constructed to cancel temporal truncation error terms. Hence, the two things work in harmony and the temporal discretization can make a strong impact on resolved scales.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
金屋藏娇完成签到,获得积分10
刚刚
sq0507完成签到,获得积分10
刚刚
Jared应助5666采纳,获得10
1秒前
开整吧完成签到,获得积分10
1秒前
张展鹏发布了新的文献求助10
2秒前
上单马冬梅完成签到,获得积分10
2秒前
orixero应助施傲天采纳,获得10
2秒前
3秒前
十三发布了新的文献求助10
3秒前
Tizzy完成签到,获得积分10
3秒前
sq0507发布了新的文献求助10
3秒前
4秒前
星辰大海应助hunbaekkkkk采纳,获得10
4秒前
VDC应助yzy采纳,获得30
5秒前
无花果应助RANQIAO采纳,获得10
5秒前
慕青应助CFSJ采纳,获得10
5秒前
6秒前
cora发布了新的文献求助10
6秒前
包容夕阳完成签到,获得积分10
6秒前
赘婿应助务实的绮山采纳,获得10
7秒前
7秒前
苏一的小宝贝完成签到,获得积分10
7秒前
小新发布了新的文献求助10
7秒前
Z170完成签到,获得积分10
8秒前
JamesPei应助沙拉酱采纳,获得10
8秒前
Yu完成签到,获得积分10
8秒前
9秒前
大模型应助sq0507采纳,获得10
9秒前
科研通AI6应助默默的橘子采纳,获得10
9秒前
靴子完成签到,获得积分20
10秒前
10秒前
小小发布了新的文献求助10
10秒前
11秒前
FashionBoy应助terryok采纳,获得10
11秒前
Jaxine应助cora采纳,获得20
11秒前
Sea_U发布了新的文献求助10
11秒前
11秒前
12秒前
hui发布了新的文献求助30
12秒前
CipherSage应助Yu采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531157
求助须知:如何正确求助?哪些是违规求助? 4620066
关于积分的说明 14571278
捐赠科研通 4559548
什么是DOI,文献DOI怎么找? 2498481
邀请新用户注册赠送积分活动 1478473
关于科研通互助平台的介绍 1449946