The LES model's role in jet noise

离散化 耗散系统 应用数学 背景(考古学) 解算器 大涡模拟 计算机科学 数学 统计物理学 数学分析 物理 数学优化 地质学 气象学 古生物学 湍流 量子力学
作者
Paul G. Tucker
出处
期刊:Progress in Aerospace Sciences [Elsevier]
卷期号:44 (6): 427-436 被引量:25
标识
DOI:10.1016/j.paerosci.2008.06.002
摘要

Problem definition, near wall modeling and other factors, including grid structure along with its implications on filter definition, are suggested to be of potentially greater importance for practical jet simulations than the LES (large eddy simulation) model. This latter element in itself can be theoretically questionable. When moving to realistic engine conditions, it is noted that disentangling numerical influences from the LES model's appear difficult and negates the model value with its omission potentially being beneficial. Evidence cited suggests that if using an LES model for jets, choosing the numerically best conditioned or the one the code has or, for a dissipative solver, even LES model omission seems sensible. This view point precludes combustion modeling. Tensors of additional derivatives, used in non-linear LES models, when expanded, can yield potentially several hundred interesting derivatives. It is suggested that the MILES (monotone-integrated LES) and LES communities should move towards seeing where modified equation derivatives connect with derivatives that appear in more state of the art non-linear LES models. Then the best features could be combined to form mixed MILES–LES models or even mixed MILES–LES–RANS models. Combustion modeling also presents hybridization potential but in a different context. Most MILES-modified equation analysis focus on the spatial discretization and not the temporal. However, with some codes the spatial discretization terms are deliberately constructed to cancel temporal truncation error terms. Hence, the two things work in harmony and the temporal discretization can make a strong impact on resolved scales.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王钰绮完成签到 ,获得积分10
刚刚
耳朵先生完成签到,获得积分10
1秒前
1秒前
LIO完成签到 ,获得积分10
1秒前
orixero应助清楚采纳,获得10
1秒前
1秒前
1秒前
2秒前
2秒前
金枪鱼完成签到,获得积分10
2秒前
笨笨的啤酒完成签到,获得积分20
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
mhb115完成签到,获得积分10
4秒前
4秒前
5秒前
温乘云发布了新的文献求助10
5秒前
手术完成签到,获得积分20
5秒前
开心忆秋发布了新的文献求助30
6秒前
6秒前
小芒果发布了新的文献求助10
6秒前
慕青应助Fairy采纳,获得10
6秒前
人各有痣完成签到,获得积分10
6秒前
田様应助Kim采纳,获得10
7秒前
姜姜完成签到,获得积分10
8秒前
祖之微笑发布了新的文献求助10
8秒前
共享精神应助不可思宇采纳,获得10
8秒前
科研不秃头完成签到,获得积分10
9秒前
yajun发布了新的文献求助10
9秒前
清楚完成签到,获得积分10
9秒前
9秒前
liwenhao应助Stranger采纳,获得10
9秒前
9秒前
JH完成签到,获得积分10
9秒前
9秒前
qu蛐完成签到 ,获得积分10
9秒前
黄坤完成签到,获得积分10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699262
求助须知:如何正确求助?哪些是违规求助? 5129994
关于积分的说明 15225198
捐赠科研通 4854268
什么是DOI,文献DOI怎么找? 2604550
邀请新用户注册赠送积分活动 1556014
关于科研通互助平台的介绍 1514297