Digitalizing Traditional Chinese Medicine Pulse Diagnosis with Artificial Neural Network

人工神经网络 计算机科学 波形 人工智能 脉搏(音乐) 深度学习 模式识别(心理学) 电信 探测器 雷达
作者
Anson Chui Yan Tang,Joanne W. Y. Chung,Thomas K S Wong
出处
期刊:Telemedicine Journal and E-health [Mary Ann Liebert]
卷期号:18 (6): 446-453 被引量:36
标识
DOI:10.1089/tmj.2011.0204
摘要

Objectives:The increasing popularities of traditional Chinese medicine (TCM) and telehealth indicate a need for digitalizing major clinical assessment methods used during TCM consultations. In this study, an electronic TCM pulse diagnostic system was developed, and its validity was explored.Materials and Methods:The system was developed with an artificial neural network (ANN). The output neurons were TCM pulse qualities operationalized as the intensity of eight elements (depth, rate, regularity, width, length, smoothness, stiffness, and strength) at six locations (left and right cun, guan, and chi). The input neurons were physical parameters of arterial pressure waveform acquired from the six locations by a pulse acquisition device. TCM pulse quality was rated by a TCM doctor on a 0–10 visual analog scale. Physical parameters were extracted from the arterial pressure waveform with a pulse extraction program developed in-house. The model structure, including number of hidden neurons and hidden layers, and training algorithms were manipulated to optimize model performance. The value of r2was the outcome measure indicating model performance.Results:Two hundred twenty-nine subjects were recruited. Four-layer ANN models trained with 45 hidden neurons and the Levenberg–Marquardt algorithm performed the best. The r2ranged from 0.60 to 0.86.Conclusions:The validity of the proposed system generated by ANN is established and can assist TCM doctors in collecting relevant health data during telehealth consultation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
浮游应助djbj2022采纳,获得10
4秒前
8秒前
优秀笑柳完成签到,获得积分10
8秒前
丘比特应助trussie采纳,获得10
8秒前
Cherish完成签到,获得积分10
9秒前
111完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
Owen应助马上飞上宇宙采纳,获得10
10秒前
善学以致用应助jc采纳,获得10
10秒前
12秒前
划分完成签到,获得积分10
12秒前
111发布了新的文献求助10
13秒前
fanfan完成签到,获得积分10
14秒前
周久完成签到 ,获得积分10
14秒前
ada发布了新的文献求助10
15秒前
小蘑菇应助小卢卢快闭嘴采纳,获得10
16秒前
彭tiantian完成签到 ,获得积分10
16秒前
18秒前
lucy发布了新的文献求助10
18秒前
20秒前
爱放屁的马邦德完成签到,获得积分10
20秒前
simdows发布了新的文献求助10
21秒前
Rain完成签到,获得积分10
22秒前
23秒前
lzcccccc完成签到,获得积分10
24秒前
ljc完成签到 ,获得积分10
25秒前
26秒前
科研通AI6应助纸箱采纳,获得10
27秒前
27秒前
original完成签到,获得积分10
28秒前
一向年光无限身完成签到,获得积分10
28秒前
浮游应助大李不说话采纳,获得10
30秒前
31秒前
日出完成签到,获得积分10
32秒前
Twonej举报lilianan求助涉嫌违规
33秒前
33秒前
七星茶发布了新的文献求助10
34秒前
无花果应助Wells采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638000
求助须知:如何正确求助?哪些是违规求助? 4744481
关于积分的说明 15000910
捐赠科研通 4796182
什么是DOI,文献DOI怎么找? 2562369
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481741