亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Digitalizing Traditional Chinese Medicine Pulse Diagnosis with Artificial Neural Network

人工神经网络 计算机科学 波形 人工智能 脉搏(音乐) 深度学习 模式识别(心理学) 电信 雷达 探测器
作者
Anson Chui Yan Tang,Joanne W. Y. Chung,Thomas K S Wong
出处
期刊:Telemedicine Journal and E-health [Mary Ann Liebert, Inc.]
卷期号:18 (6): 446-453 被引量:36
标识
DOI:10.1089/tmj.2011.0204
摘要

Objectives:The increasing popularities of traditional Chinese medicine (TCM) and telehealth indicate a need for digitalizing major clinical assessment methods used during TCM consultations. In this study, an electronic TCM pulse diagnostic system was developed, and its validity was explored.Materials and Methods:The system was developed with an artificial neural network (ANN). The output neurons were TCM pulse qualities operationalized as the intensity of eight elements (depth, rate, regularity, width, length, smoothness, stiffness, and strength) at six locations (left and right cun, guan, and chi). The input neurons were physical parameters of arterial pressure waveform acquired from the six locations by a pulse acquisition device. TCM pulse quality was rated by a TCM doctor on a 0–10 visual analog scale. Physical parameters were extracted from the arterial pressure waveform with a pulse extraction program developed in-house. The model structure, including number of hidden neurons and hidden layers, and training algorithms were manipulated to optimize model performance. The value of r2was the outcome measure indicating model performance.Results:Two hundred twenty-nine subjects were recruited. Four-layer ANN models trained with 45 hidden neurons and the Levenberg–Marquardt algorithm performed the best. The r2ranged from 0.60 to 0.86.Conclusions:The validity of the proposed system generated by ANN is established and can assist TCM doctors in collecting relevant health data during telehealth consultation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dada发布了新的文献求助10
1秒前
10秒前
1分钟前
1分钟前
SiboN发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI5应助leapper采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
SiboN完成签到,获得积分10
2分钟前
leapper发布了新的文献求助10
2分钟前
2分钟前
kuoping完成签到,获得积分0
2分钟前
2分钟前
sjh发布了新的文献求助10
2分钟前
2分钟前
3分钟前
冷傲半邪完成签到,获得积分10
3分钟前
3分钟前
3分钟前
NexusExplorer应助Nicole采纳,获得10
3分钟前
Criminology34应助读书的时候采纳,获得10
3分钟前
3分钟前
3分钟前
Criminology34应助读书的时候采纳,获得10
3分钟前
4分钟前
沉静的半仙完成签到,获得积分10
4分钟前
arsenal完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
张童鞋完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
鹏笑发布了新的文献求助10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4935415
求助须知:如何正确求助?哪些是违规求助? 4202806
关于积分的说明 13058838
捐赠科研通 3977769
什么是DOI,文献DOI怎么找? 2179602
邀请新用户注册赠送积分活动 1195669
关于科研通互助平台的介绍 1107383