Digitalizing Traditional Chinese Medicine Pulse Diagnosis with Artificial Neural Network

人工神经网络 计算机科学 波形 人工智能 脉搏(音乐) 深度学习 模式识别(心理学) 电信 雷达 探测器
作者
Anson Chui Yan Tang,Joanne W. Y. Chung,Thomas K S Wong
出处
期刊:Telemedicine Journal and E-health [Mary Ann Liebert]
卷期号:18 (6): 446-453 被引量:36
标识
DOI:10.1089/tmj.2011.0204
摘要

Objectives:The increasing popularities of traditional Chinese medicine (TCM) and telehealth indicate a need for digitalizing major clinical assessment methods used during TCM consultations. In this study, an electronic TCM pulse diagnostic system was developed, and its validity was explored.Materials and Methods:The system was developed with an artificial neural network (ANN). The output neurons were TCM pulse qualities operationalized as the intensity of eight elements (depth, rate, regularity, width, length, smoothness, stiffness, and strength) at six locations (left and right cun, guan, and chi). The input neurons were physical parameters of arterial pressure waveform acquired from the six locations by a pulse acquisition device. TCM pulse quality was rated by a TCM doctor on a 0–10 visual analog scale. Physical parameters were extracted from the arterial pressure waveform with a pulse extraction program developed in-house. The model structure, including number of hidden neurons and hidden layers, and training algorithms were manipulated to optimize model performance. The value of r2was the outcome measure indicating model performance.Results:Two hundred twenty-nine subjects were recruited. Four-layer ANN models trained with 45 hidden neurons and the Levenberg–Marquardt algorithm performed the best. The r2ranged from 0.60 to 0.86.Conclusions:The validity of the proposed system generated by ANN is established and can assist TCM doctors in collecting relevant health data during telehealth consultation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
科研123发布了新的文献求助10
2秒前
Rainbow发布了新的文献求助10
2秒前
2秒前
米花完成签到 ,获得积分10
2秒前
凝子老师发布了新的文献求助10
3秒前
flying蝈蝈完成签到,获得积分10
3秒前
Rein完成签到,获得积分10
3秒前
3秒前
Zxc发布了新的文献求助10
3秒前
nininidoc完成签到,获得积分10
4秒前
123号发布了新的文献求助10
6秒前
Chen发布了新的文献求助10
7秒前
汉堡包应助caoyy采纳,获得10
7秒前
阳阳发布了新的文献求助10
7秒前
田所浩二完成签到 ,获得积分10
7秒前
7秒前
华仔应助奶糖采纳,获得30
8秒前
动力小滋完成签到,获得积分10
8秒前
ding应助瑶一瑶采纳,获得10
11秒前
fmwang完成签到,获得积分10
12秒前
万能图书馆应助Zxc采纳,获得10
12秒前
Rainbow完成签到,获得积分10
12秒前
小小郭完成签到 ,获得积分10
12秒前
14秒前
Orange应助务实的犀牛采纳,获得10
14秒前
追寻飞风完成签到,获得积分10
14秒前
wenli完成签到,获得积分10
15秒前
15秒前
16秒前
Schmoo完成签到,获得积分10
17秒前
19秒前
圆圆的脑袋应助涛浪采纳,获得10
20秒前
隐形曼青应助皮皮桂采纳,获得10
21秒前
凝子老师完成签到,获得积分10
21秒前
奶糖发布了新的文献求助30
21秒前
TORCH完成签到 ,获得积分10
23秒前
李健的小迷弟应助lin采纳,获得10
23秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849