Digitalizing Traditional Chinese Medicine Pulse Diagnosis with Artificial Neural Network

人工神经网络 计算机科学 波形 人工智能 脉搏(音乐) 深度学习 模式识别(心理学) 电信 探测器 雷达
作者
Anson Chui Yan Tang,Joanne W. Y. Chung,Thomas K S Wong
出处
期刊:Telemedicine Journal and E-health [Mary Ann Liebert]
卷期号:18 (6): 446-453 被引量:36
标识
DOI:10.1089/tmj.2011.0204
摘要

Objectives:The increasing popularities of traditional Chinese medicine (TCM) and telehealth indicate a need for digitalizing major clinical assessment methods used during TCM consultations. In this study, an electronic TCM pulse diagnostic system was developed, and its validity was explored.Materials and Methods:The system was developed with an artificial neural network (ANN). The output neurons were TCM pulse qualities operationalized as the intensity of eight elements (depth, rate, regularity, width, length, smoothness, stiffness, and strength) at six locations (left and right cun, guan, and chi). The input neurons were physical parameters of arterial pressure waveform acquired from the six locations by a pulse acquisition device. TCM pulse quality was rated by a TCM doctor on a 0–10 visual analog scale. Physical parameters were extracted from the arterial pressure waveform with a pulse extraction program developed in-house. The model structure, including number of hidden neurons and hidden layers, and training algorithms were manipulated to optimize model performance. The value of r2was the outcome measure indicating model performance.Results:Two hundred twenty-nine subjects were recruited. Four-layer ANN models trained with 45 hidden neurons and the Levenberg–Marquardt algorithm performed the best. The r2ranged from 0.60 to 0.86.Conclusions:The validity of the proposed system generated by ANN is established and can assist TCM doctors in collecting relevant health data during telehealth consultation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
几酌应助susu307采纳,获得10
1秒前
liuyac发布了新的文献求助10
1秒前
认真子默发布了新的文献求助10
2秒前
2秒前
2秒前
完美世界应助张磊采纳,获得10
3秒前
cuicui完成签到 ,获得积分10
3秒前
顶顶小明完成签到,获得积分10
3秒前
xiaojcom应助满意的夜柳采纳,获得10
3秒前
4秒前
4秒前
斯文败类应助于冷松采纳,获得10
4秒前
贝贝完成签到,获得积分10
5秒前
xunmacaoyan完成签到,获得积分10
5秒前
yyds发布了新的文献求助10
6秒前
g3618发布了新的文献求助10
8秒前
8秒前
p65发布了新的文献求助10
8秒前
liuyac完成签到,获得积分10
8秒前
陌陌完成签到,获得积分10
9秒前
10秒前
干净翠桃发布了新的文献求助10
10秒前
科研工具人完成签到,获得积分10
11秒前
11秒前
幸福的罡完成签到,获得积分10
12秒前
12秒前
12秒前
Singularity应助赵哥采纳,获得10
12秒前
14秒前
faye完成签到,获得积分10
14秒前
15秒前
一棵树发布了新的文献求助10
15秒前
隐形曼青应助季生采纳,获得10
16秒前
goodesBright应助义气的丹妗采纳,获得30
16秒前
17秒前
sweet完成签到,获得积分10
17秒前
于冷松发布了新的文献求助10
18秒前
易义德发布了新的文献求助10
18秒前
求助吃草小河马完成签到,获得积分10
18秒前
JSDYCH完成签到,获得积分10
19秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168208
求助须知:如何正确求助?哪些是违规求助? 2819559
关于积分的说明 7927087
捐赠科研通 2479402
什么是DOI,文献DOI怎么找? 1320787
科研通“疑难数据库(出版商)”最低求助积分说明 632907
版权声明 602458