微生物种群生物学
环境科学
细菌生长
适应(眼睛)
基质(水族馆)
增长曲线(统计)
麦角甾醇
生态学
生物
细菌
环境化学
化学
植物
数学
计量经济学
神经科学
遗传学
作者
Gema Bárcenas-Moreno,María Gómez‐Brandón,Johannes Rousk,Erland Bååth
标识
DOI:10.1111/j.1365-2486.2009.01882.x
摘要
Abstract Temperature not only has direct effects on microbial activity, but can also affect activity indirectly by changing the temperature dependency of the community. This would result in communities performing better over time in response to increased temperatures. We have for the first time studied the effect of soil temperature (5–50 °C) on the community adaptation of both bacterial (leucine incorporation) and fungal growth (acetate‐in‐ergosterol incorporation). Growth at different temperatures was estimated after about a month using a short‐term assay to avoid confounding the effects of temperature on substrate availability. Before the experiment started, fungal and bacterial growth was optimal around 30 °C. Increasing soil temperature above this resulted in an increase in the optimum for bacterial growth, correlated to soil temperature, with parallel shifts in the total response curve. Below the optimum, soil temperature had only minor effects, although lower temperatures selected for communities growing better at the lowest temperature. Fungi were affected in the same way as bacteria, with large shifts in temperature tolerance at soil temperatures above that of optimum for growth. A simplified technique, only comparing growth at two contrasting temperatures, gave similar results as using a complete temperature curve, allowing for large scale measurements also in field situations with small differences in temperature.
科研通智能强力驱动
Strongly Powered by AbleSci AI