Experiences with evacuation route planning algorithms

计算机科学 线路规划 算法 地理 运筹学 运输工程 工程类
作者
Shashi Shekhar,KwangSoo Yang,Venkata M. V. Gunturi,Lydia Manikonda,Dev Oliver,Xun Zhou,Betsy George,Sangho Kim,Jeffrey M.R. Wolff,Qingsong Lu
出处
期刊:International Journal of Geographical Information Science [Informa]
卷期号:26 (12): 2253-2265 被引量:79
标识
DOI:10.1080/13658816.2012.719624
摘要

Efficient tools are needed to identify routes and schedules to evacuate affected populations to safety in the event of natural disasters. Hurricane Rita and the recent tsunami revealed limitations of traditional approaches to provide emergency preparedness for evacuees and to predict the effects of evacuation route planning (ERP). Challenges arise during evacuations due to the spread of people over space and time and the multiple paths that can be taken to reach them; key assumptions such as stationary ranking of alternative routes and optimal substructure are violated in such situations. Algorithms for ERP were first developed by researchers in operations research and transportation science. However, these proved to have high computational complexity and did not scale well to large problems. Over the last decade, we developed a different approach, namely the Capacity Constrained Route Planner (CCRP), which generalizes shortest path algorithms by honoring capacity constraints and the spread of people over space and time. The CCRP uses time-aggregated graphs to reduce storage overhead and increase computational efficiency. Experimental evaluation and field use in Twin Cities Homeland Security scenarios demonstrated that CCRP is faster, more scalable, and easier to use than previous techniques. We also propose a novel scalable algorithm that exploits the spatial structure of transportation networks to accelerate routing algorithms for large network datasets. We evaluated our new approach for large-scale networks around downtown Minneapolis and riverside areas. This article summarizes experiences and lessons learned during the last decade in ERP and relates these to Professor Goodchild's contributions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
wanci应助等下采纳,获得10
2秒前
2秒前
3秒前
司空豁应助呼呼叫采纳,获得10
4秒前
沉默的皮卡丘完成签到 ,获得积分10
5秒前
QingY发布了新的文献求助10
5秒前
蔡扬鹏发布了新的文献求助10
6秒前
胡庆余发布了新的文献求助10
7秒前
平常的灵发布了新的文献求助10
8秒前
萤火完成签到,获得积分10
12秒前
萧水白应助aw采纳,获得10
12秒前
新新宝完成签到,获得积分10
13秒前
Le完成签到,获得积分10
13秒前
13秒前
顺心火龙果完成签到,获得积分10
14秒前
肥陈完成签到,获得积分10
15秒前
17秒前
Demon发布了新的文献求助10
17秒前
QingY完成签到,获得积分20
17秒前
烟花应助悦悦采纳,获得10
18秒前
18秒前
kkkkfox完成签到,获得积分10
19秒前
李健应助光亮诗桃采纳,获得10
20秒前
21秒前
嘻嘻完成签到,获得积分10
21秒前
博士僧发布了新的文献求助10
22秒前
22秒前
酷波er应助赵十一采纳,获得10
24秒前
8y24dp发布了新的文献求助10
25秒前
嘻嘻发布了新的文献求助10
25秒前
61完成签到,获得积分20
25秒前
25秒前
彭于晏应助Demon采纳,获得30
26秒前
ccds发布了新的文献求助20
26秒前
科研小白完成签到 ,获得积分10
27秒前
平常的灵完成签到,获得积分10
28秒前
不配.应助哭泣的缘郡采纳,获得20
32秒前
大个应助dr_zhoujielong采纳,获得10
33秒前
暴躁的初阳完成签到,获得积分0
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292496
求助须知:如何正确求助?哪些是违规求助? 2928822
关于积分的说明 8438538
捐赠科研通 2600907
什么是DOI,文献DOI怎么找? 1419337
科研通“疑难数据库(出版商)”最低求助积分说明 660282
邀请新用户注册赠送积分活动 642921