回转半径
聚合物
特性粘度
回转
高分子
链条(单位)
星形聚合物
半径
拓扑(电路)
物理
材料科学
高分子科学
数学
化学
几何学
计算机科学
组合数学
量子力学
核磁共振
生物化学
聚合
计算机安全
作者
Danail Bonchev,Eric J. Markel,Armenag H. Dekmezian
出处
期刊:Polymer
[Elsevier]
日期:2002-01-01
卷期号:43 (1): 203-222
被引量:52
标识
DOI:10.1016/s0032-3861(01)00589-4
摘要
An explicit topological approach to the dimensions of LCB polymers is presented. It is based on the Wiener number, a topological descriptor which is shown in this study to be related to the topological radius of the macromolecule, the mean-square radius of gyration, the g-ratio, and the intrinsic viscosity within the Rouse–Zimm range. The new theory enables the treatment of the highly complex hyperbranched polymers, which are difficult to handle by the classical theory of Zimm and Stockmayer. The agreement with the measured g-values of model polyethylenes, synthesized by Hadjichristidis et al., is fairly good for star-like polymers and satisfactory for pom–pom type of structures, whereas for crowded comb-type species the calculated g-values are underpredicted. Extension of the approach is shown to cyclic structures for which the Kirchhoff number replaces the Wiener number.
科研通智能强力驱动
Strongly Powered by AbleSci AI