阴极
电化学
磷酸铁锂
材料科学
储能
电动汽车
氧化还原
阳极
化学工程
离子
相(物质)
纳米技术
锂(药物)
电极
化学
冶金
医学
功率(物理)
物理
有机化学
物理化学
量子力学
工程类
内分泌学
作者
B. Ellis,W. R. M. Makahnouk,Yoshinari Makimura,Kathryn E. Toghill,Linda F. Nazar
出处
期刊:Nature Materials
[Nature Portfolio]
日期:2007-09-09
卷期号:6 (10): 749-753
被引量:908
摘要
In the search for new positive-electrode materials for lithium-ion batteries, recent research has focused on nanostructured lithium transition-metal phosphates that exhibit desirable properties such as high energy storage capacity combined with electrochemical stability1,2. Only one member of this class—the olivine LiFePO4 (ref. 3)—has risen to prominence so far, owing to its other characteristics, which include low cost, low environmental impact and safety. These are critical for large-capacity systems such as plug-in hybrid electric vehicles. Nonetheless, olivine has some inherent shortcomings, including one-dimensional lithium-ion transport and a two-phase redox reaction that together limit the mobility of the phase boundary4,5,6,7. Thus, nanocrystallites are key to enable fast rate behaviour8,9. It has also been suggested that the long-term economic viability of large-scale Li-ion energy storage systems could be ultimately limited by global lithium reserves, although this remains speculative at present. (Current proven world reserves should be sufficient for the hybrid electric vehicle market, although plug-in hybrid electric vehicle and electric vehicle expansion would put considerable strain on resources and hence cost effectiveness.) Here, we report on a sodium/lithium iron phosphate, A2FePO4F (A=Na, Li), that could serve as a cathode in either Li-ion or Na-ion cells. Furthermore, it possesses facile two-dimensional pathways for Li+ transport, and the structural changes on reduction–oxidation are minimal. This results in a volume change of only 3.7% that—unlike the olivine—contributes to the absence of distinct two-phase behaviour during redox, and a reversible capacity that is 85% of theoretical.
科研通智能强力驱动
Strongly Powered by AbleSci AI