Robust (Semi) Nonnegative Graph Embedding

非负矩阵分解 嵌入 稳健性(进化) 判别式 矩阵分解 计算机科学 乘法函数 图形 图嵌入 人工智能 模式识别(心理学) 算法 理论计算机科学 数学 数学分析 生物化学 特征向量 物理 化学 量子力学 基因
作者
Hanwang Zhang,Zheng-Jun Zha,Yang Yang,Shuicheng Yan,Tat-Seng Chua
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:23 (7): 2996-3012 被引量:54
标识
DOI:10.1109/tip.2014.2325784
摘要

Nonnegative matrix factorization (NMF) has received considerable attention in image processing, computer vision, and patter recognition. An important variant of NMF is nonnegative graph embedding (NGE), which encodes the statistical or geometric information of data in the process of matrix factorization. The NGE offers a general framework for unsupervised/supervised settings. However, NGE-like algorithms often suffer from noisy data, unreliable graphs, and noisy labels, which are commonly encountered in real-world applications. To address these issues, in this paper, we first propose a robust nonnegative graph embedding (RNGE) framework, where the joint sparsity in both graph embedding and data reconstruction endues robustness to undesirable noises. Next, we present a robust seminonnegative graph embedding (RsNGE) framework, which only constrains the coefficient matrix to be nonnegative while places no constraint on the base matrix. This extends the applicable range of RNGE to data which are not nonnegative and endows more discriminative power of the learnt base matrix. The RNGE/RsNGE provides a general formulation such that all the algorithms unified within the graph embedding framework can be easily extended to obtain their robust nonnegative/seminonnegative solutions. Further, we develop elegant multiplicative updating solutions that can solve RNGE/RsNGE efficiently and offer a rigorous convergence analysis. We conduct extensive experiments on four real-world data sets and compare the proposed RNGE/RsNGE to other representative NMF variants and data factorization methods. The experimental results demonstrate the robustness and effectiveness of the proposed approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心努力毕业版完成签到,获得积分10
刚刚
1秒前
1秒前
西北射天狼完成签到 ,获得积分10
1秒前
1秒前
why发布了新的文献求助10
2秒前
3秒前
解觅荷发布了新的文献求助10
3秒前
mamei完成签到,获得积分10
3秒前
kimi完成签到,获得积分10
4秒前
4秒前
天天完成签到,获得积分10
5秒前
moonglow发布了新的文献求助30
5秒前
5秒前
酷炫雅青完成签到,获得积分10
6秒前
rubbish发布了新的文献求助10
7秒前
kimi发布了新的文献求助10
7秒前
Jason关注了科研通微信公众号
7秒前
Inter09发布了新的文献求助10
7秒前
8秒前
张瑞彬完成签到,获得积分10
8秒前
8秒前
8秒前
酷波er应助杜彦君采纳,获得10
8秒前
9秒前
ifegiugfieugfig完成签到,获得积分10
9秒前
我爱科研发布了新的文献求助10
9秒前
爆米花应助朝阳采纳,获得10
10秒前
11秒前
11秒前
11秒前
12秒前
11发布了新的文献求助10
12秒前
温暖芸完成签到,获得积分10
12秒前
蟑螂恶霸发布了新的文献求助30
12秒前
华仔应助大胆水杯采纳,获得10
13秒前
jingyu完成签到,获得积分10
13秒前
彩色的饼干完成签到,获得积分10
14秒前
xx发布了新的文献求助10
14秒前
swityha发布了新的文献求助10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A technique for the measurement of attitudes 500
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148683
求助须知:如何正确求助?哪些是违规求助? 2799722
关于积分的说明 7836622
捐赠科研通 2457168
什么是DOI,文献DOI怎么找? 1307779
科研通“疑难数据库(出版商)”最低求助积分说明 628265
版权声明 601663