Robust (Semi) Nonnegative Graph Embedding

非负矩阵分解 嵌入 稳健性(进化) 判别式 矩阵分解 计算机科学 乘法函数 图形 图嵌入 人工智能 模式识别(心理学) 算法 理论计算机科学 数学 数学分析 生物化学 特征向量 物理 化学 量子力学 基因
作者
Hanwang Zhang,Zheng-Jun Zha,Yang Yang,Shuicheng Yan,Tat-Seng Chua
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:23 (7): 2996-3012 被引量:54
标识
DOI:10.1109/tip.2014.2325784
摘要

Nonnegative matrix factorization (NMF) has received considerable attention in image processing, computer vision, and patter recognition. An important variant of NMF is nonnegative graph embedding (NGE), which encodes the statistical or geometric information of data in the process of matrix factorization. The NGE offers a general framework for unsupervised/supervised settings. However, NGE-like algorithms often suffer from noisy data, unreliable graphs, and noisy labels, which are commonly encountered in real-world applications. To address these issues, in this paper, we first propose a robust nonnegative graph embedding (RNGE) framework, where the joint sparsity in both graph embedding and data reconstruction endues robustness to undesirable noises. Next, we present a robust seminonnegative graph embedding (RsNGE) framework, which only constrains the coefficient matrix to be nonnegative while places no constraint on the base matrix. This extends the applicable range of RNGE to data which are not nonnegative and endows more discriminative power of the learnt base matrix. The RNGE/RsNGE provides a general formulation such that all the algorithms unified within the graph embedding framework can be easily extended to obtain their robust nonnegative/seminonnegative solutions. Further, we develop elegant multiplicative updating solutions that can solve RNGE/RsNGE efficiently and offer a rigorous convergence analysis. We conduct extensive experiments on four real-world data sets and compare the proposed RNGE/RsNGE to other representative NMF variants and data factorization methods. The experimental results demonstrate the robustness and effectiveness of the proposed approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
着急的一曲完成签到 ,获得积分10
1秒前
2秒前
3秒前
5秒前
锂安完成签到,获得积分10
6秒前
wyx完成签到 ,获得积分10
8秒前
CoCo完成签到 ,获得积分10
9秒前
听风者发布了新的文献求助20
11秒前
淡定访琴完成签到,获得积分10
11秒前
tamaco完成签到,获得积分10
12秒前
15秒前
Jasper应助任性的冷梅采纳,获得10
20秒前
科目二三次郎完成签到,获得积分10
24秒前
25秒前
25秒前
mxq完成签到,获得积分10
26秒前
852应助Derik采纳,获得10
27秒前
66完成签到 ,获得积分10
27秒前
30秒前
宵宫完成签到,获得积分10
31秒前
小马甲应助研友_Ze0vBn采纳,获得10
32秒前
dodo应助lambda采纳,获得200
32秒前
归尘发布了新的文献求助10
33秒前
35秒前
阉太狼完成签到,获得积分10
36秒前
华仔应助yinuo采纳,获得10
37秒前
明亮的青旋完成签到 ,获得积分10
39秒前
芳蔼完成签到 ,获得积分20
40秒前
41秒前
c123完成签到 ,获得积分10
43秒前
科研通AI2S应助lumingrui采纳,获得10
44秒前
45秒前
典雅又夏完成签到,获得积分10
46秒前
华仔应助顺心的面包采纳,获得10
47秒前
李Li完成签到 ,获得积分20
48秒前
48秒前
49秒前
pluto应助fountainli采纳,获得10
49秒前
珏珏_不是玉玉完成签到 ,获得积分10
51秒前
RIPCCCP完成签到,获得积分10
52秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966246
求助须知:如何正确求助?哪些是违规求助? 3511683
关于积分的说明 11159207
捐赠科研通 3246284
什么是DOI,文献DOI怎么找? 1793339
邀请新用户注册赠送积分活动 874347
科研通“疑难数据库(出版商)”最低求助积分说明 804343