缺铁
生物化学
生物
糖酵解
新陈代谢
代谢途径
信号转导
细胞生物学
化学
医学
内科学
贫血
作者
Jie Li,Xudong Wu,Shanting Hao,Xiu‐Jie Wang,Hong‐Qing Ling
出处
期刊:Proteomics
[Wiley]
日期:2008-05-04
卷期号:8 (11): 2299-2311
被引量:77
标识
DOI:10.1002/pmic.200700942
摘要
To know the root adjustment in response to iron deficiency, differentially displayed proteins in tomato roots of wild type and its iron uptake inefficient mutant T3238fer were analyzed by 2-DE and MALDI-TOF MS-based proteomic method under iron sufficiency and deficiency. Ninety-seven proteins were identified, 63 of them were classified in various metabolic pathways. About 40 proteins involved in starch degradation, TCA and ascorbate cycles were upregulated under iron deficiency and grouped in a network together with glycolysis, whereas proteins for fructose metabolism were decreased. Proteins involved in methionine synthesis, cell wall synthesis, mitochondria ATP synthesis, vacuole ATPase, HSP70/90, etc. also revealed enhanced expression under iron deficiency, while proteins about redox homeostasis, transcription factors, kinases, etc. showed diversified changes. The responses are closely associated with energy metabolism, organic acid formation, root morphological change, redox and sulfur homeostasis, and signal transduction, which enhance iron uptake, reutilization and other adaptive changes. Most of the proteins affected by iron deficiency and fer mutation showed similar effect on individual proteins or pathways, but the independent function of FER to iron deficiency were statistically indicated.
科研通智能强力驱动
Strongly Powered by AbleSci AI