An Introduction of CO2 Conversion by Dry Reforming with Methane and New Route of Low-Temperature Methanol Synthesis

合成气 二氧化碳重整 甲烷 合成气制汽油 催化作用 天然气 温室气体 甲醇 甲烷转化炉 碳纤维 蒸汽重整 化学 纳米技术 化学工程 材料科学 有机化学 制氢 生态学 复合数 工程类 复合材料 生物
作者
Lei Shi,Guohui Yang,Kai Tao,Yoshiharu Yoneyama,Yisheng Tan,Noritatsu Tsubaki
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:46 (8): 1838-1847 被引量:145
标识
DOI:10.1021/ar300217j
摘要

Carbon dioxide is one of the highest contributors to the greenhouse effect, as well as a cheap and nontoxic building block for single carbon source chemistry. As such, CO₂ conversion is one of most important research areas in energy and environment sciences, as well as in catalysis technology. For chemical conversion of CO₂, natural gas (mainly CH₄) is a promising counterpart molecule to the CO₂-related reaction, due to its high availability and low price. More importantly, being able to convert CH₄ to useful fuels and molecules is advantageous, because it is also a kind of "greenhouse effect" gas, and can be an energy alternative to petroleum oil. In this Account, we discuss our development of efficient catalysts with precisely designed nanostructure for CO₂ reforming of CH₄ to produce syngas (mixture of CO and H₂), which can then be converted to many chemicals and energy products. This new production flow can establish a GTL (gas-to-liquid) industry, being currently pushed by the shale gas revolution. From the viewpoint of GTL industry, developing a catalyst for CO₂ reforming of CH₄ is a challenge, because they need a very high production rate to make the huge GTL methane reformer as small as possible. In addition, since both CO₂ and CH₄ give off carbon deposits that deactivate non-precious metallic catalysts very quickly, the total design of catalyst support and supported metallic nanoparticles is necessary. We present a simple but useful method to prepare bimodal catalyst support, where small pores are formed inside large ones during the self-organization of nanoparticles from solution. Large pores enhance the mass transfer rate, while small pores provide large surface areas to disperse active metallic nanoparticles. More importantly, building materials for small pores can also be used as promoters or cocatalysts to further enhance the total activity and stability. Produced syngas from methane reforming is generally catalytically converted in situ via one of two main routes. The first is to use Fischer-Tropsch synthesis (FTS), a process that catalytically converts syngas to hydrocarbons of varying molecular weights. The second is methanol synthesis. The latter has better atomic economy, since the oxygen atom in CO is included in the product and CO₂ can be blended into syngas as a reactant. However, production of methanol is very inefficient in this reaction: only 10-15% one-pass conversion typically at 5.0-10.0 MPa and 523-573 K, due to the severe thermodynamic limitations of this exothermal reaction (CO + 2H₂ = CH₃OH). In this Account, we propose and develop a new route of low-temperature methanol synthesis from CO₂-containing syngas only by adding alcohols, including methanol itself. These alcohols act as homogeneous cocatalysts and the solvent, realizing 70-100% one-pass conversion at only 5.0 MPa and 443 K. The key step is the reaction of the adsorbed formate species with alcohols to yield ester species at low temperatures, followed by the hydrogenation of ester by hydrogen atoms on metallic Cu. This changes the normal reaction path of conventional, high-temperature methanol synthesis from formate via methoxy to methanol.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
路灯下的小伙完成签到,获得积分10
刚刚
111发布了新的文献求助10
刚刚
所所应助chenjun7080采纳,获得10
刚刚
1秒前
JL关闭了JL文献求助
1秒前
2秒前
walden发布了新的文献求助10
2秒前
buno应助花花采纳,获得10
2秒前
千帆完成签到 ,获得积分10
2秒前
无花果应助帅气书白采纳,获得10
3秒前
表哥yd完成签到 ,获得积分10
3秒前
4秒前
Arima发布了新的文献求助10
4秒前
violet发布了新的文献求助10
5秒前
LIUYC完成签到,获得积分10
5秒前
科研通AI5应助细腻的易真采纳,获得10
5秒前
5秒前
轻松的老鼠完成签到,获得积分10
6秒前
畅畅儿歌完成签到,获得积分20
6秒前
7秒前
一切顺利发布了新的文献求助10
8秒前
lvxinda完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
WLWLW应助Shonso采纳,获得30
11秒前
贪玩的醉柳完成签到,获得积分10
11秒前
chenjun7080完成签到,获得积分10
11秒前
violet完成签到,获得积分10
11秒前
shabbow完成签到,获得积分10
11秒前
12秒前
12秒前
玉玉完成签到,获得积分20
13秒前
尾随温暖发布了新的文献求助10
14秒前
14秒前
小二郎应助淡定的镜子采纳,获得10
14秒前
walden完成签到,获得积分10
14秒前
酷波er应助lucky采纳,获得10
15秒前
15秒前
桐桐应助gg采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633382
求助须知:如何正确求助?哪些是违规求助? 4029342
关于积分的说明 12467045
捐赠科研通 3715550
什么是DOI,文献DOI怎么找? 2050235
邀请新用户注册赠送积分活动 1081814
科研通“疑难数据库(出版商)”最低求助积分说明 964080