An Introduction of CO2 Conversion by Dry Reforming with Methane and New Route of Low-Temperature Methanol Synthesis

合成气 二氧化碳重整 甲烷 合成气制汽油 催化作用 天然气 温室气体 甲醇 甲烷转化炉 碳纤维 蒸汽重整 化学 纳米技术 化学工程 材料科学 有机化学 制氢 复合材料 工程类 复合数 生物 生态学
作者
Lei Shi,Guohui Yang,Kai Tao,Yoshiharu Yoneyama,Yisheng Tan,Noritatsu Tsubaki
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:46 (8): 1838-1847 被引量:145
标识
DOI:10.1021/ar300217j
摘要

Carbon dioxide is one of the highest contributors to the greenhouse effect, as well as a cheap and nontoxic building block for single carbon source chemistry. As such, CO₂ conversion is one of most important research areas in energy and environment sciences, as well as in catalysis technology. For chemical conversion of CO₂, natural gas (mainly CH₄) is a promising counterpart molecule to the CO₂-related reaction, due to its high availability and low price. More importantly, being able to convert CH₄ to useful fuels and molecules is advantageous, because it is also a kind of "greenhouse effect" gas, and can be an energy alternative to petroleum oil. In this Account, we discuss our development of efficient catalysts with precisely designed nanostructure for CO₂ reforming of CH₄ to produce syngas (mixture of CO and H₂), which can then be converted to many chemicals and energy products. This new production flow can establish a GTL (gas-to-liquid) industry, being currently pushed by the shale gas revolution. From the viewpoint of GTL industry, developing a catalyst for CO₂ reforming of CH₄ is a challenge, because they need a very high production rate to make the huge GTL methane reformer as small as possible. In addition, since both CO₂ and CH₄ give off carbon deposits that deactivate non-precious metallic catalysts very quickly, the total design of catalyst support and supported metallic nanoparticles is necessary. We present a simple but useful method to prepare bimodal catalyst support, where small pores are formed inside large ones during the self-organization of nanoparticles from solution. Large pores enhance the mass transfer rate, while small pores provide large surface areas to disperse active metallic nanoparticles. More importantly, building materials for small pores can also be used as promoters or cocatalysts to further enhance the total activity and stability. Produced syngas from methane reforming is generally catalytically converted in situ via one of two main routes. The first is to use Fischer-Tropsch synthesis (FTS), a process that catalytically converts syngas to hydrocarbons of varying molecular weights. The second is methanol synthesis. The latter has better atomic economy, since the oxygen atom in CO is included in the product and CO₂ can be blended into syngas as a reactant. However, production of methanol is very inefficient in this reaction: only 10-15% one-pass conversion typically at 5.0-10.0 MPa and 523-573 K, due to the severe thermodynamic limitations of this exothermal reaction (CO + 2H₂ = CH₃OH). In this Account, we propose and develop a new route of low-temperature methanol synthesis from CO₂-containing syngas only by adding alcohols, including methanol itself. These alcohols act as homogeneous cocatalysts and the solvent, realizing 70-100% one-pass conversion at only 5.0 MPa and 443 K. The key step is the reaction of the adsorbed formate species with alcohols to yield ester species at low temperatures, followed by the hydrogenation of ester by hydrogen atoms on metallic Cu. This changes the normal reaction path of conventional, high-temperature methanol synthesis from formate via methoxy to methanol.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善良的冷梅完成签到,获得积分10
刚刚
yywang关注了科研通微信公众号
刚刚
刚刚
Dlan完成签到,获得积分10
1秒前
呆萌井完成签到,获得积分10
1秒前
2秒前
鉴湖完成签到,获得积分10
2秒前
001完成签到,获得积分10
2秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
2秒前
efengmo完成签到,获得积分10
3秒前
天真南松完成签到,获得积分10
4秒前
讨厌下雨天完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
lii完成签到,获得积分10
8秒前
哦哦完成签到,获得积分10
9秒前
ninomae完成签到 ,获得积分10
12秒前
渴望者完成签到,获得积分10
12秒前
lzl007完成签到 ,获得积分10
13秒前
只争朝夕完成签到,获得积分10
15秒前
yin完成签到,获得积分10
15秒前
abbytang完成签到 ,获得积分10
15秒前
优雅沛文完成签到 ,获得积分10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
sjw525完成签到,获得积分10
17秒前
小公牛完成签到 ,获得积分10
19秒前
李正纲完成签到 ,获得积分10
20秒前
Criminology34应助1101592875采纳,获得10
25秒前
25秒前
26秒前
孟小宝完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
28秒前
mojomars完成签到,获得积分0
28秒前
ryq327完成签到 ,获得积分10
29秒前
俏皮的老三完成签到 ,获得积分10
33秒前
小高同学完成签到,获得积分10
34秒前
潇洒的蝴蝶完成签到,获得积分10
35秒前
dldldl完成签到,获得积分10
35秒前
36秒前
养鸟的人完成签到,获得积分10
37秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584850
求助须知:如何正确求助?哪些是违规求助? 4668735
关于积分的说明 14771737
捐赠科研通 4616005
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590