An Introduction of CO2 Conversion by Dry Reforming with Methane and New Route of Low-Temperature Methanol Synthesis

合成气 二氧化碳重整 甲烷 合成气制汽油 催化作用 天然气 温室气体 甲醇 甲烷转化炉 碳纤维 蒸汽重整 化学 纳米技术 化学工程 材料科学 有机化学 制氢 复合材料 工程类 复合数 生物 生态学
作者
Lei Shi,Guohui Yang,Kai Tao,Yoshiharu Yoneyama,Yisheng Tan,Noritatsu Tsubaki
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:46 (8): 1838-1847 被引量:145
标识
DOI:10.1021/ar300217j
摘要

Carbon dioxide is one of the highest contributors to the greenhouse effect, as well as a cheap and nontoxic building block for single carbon source chemistry. As such, CO₂ conversion is one of most important research areas in energy and environment sciences, as well as in catalysis technology. For chemical conversion of CO₂, natural gas (mainly CH₄) is a promising counterpart molecule to the CO₂-related reaction, due to its high availability and low price. More importantly, being able to convert CH₄ to useful fuels and molecules is advantageous, because it is also a kind of "greenhouse effect" gas, and can be an energy alternative to petroleum oil. In this Account, we discuss our development of efficient catalysts with precisely designed nanostructure for CO₂ reforming of CH₄ to produce syngas (mixture of CO and H₂), which can then be converted to many chemicals and energy products. This new production flow can establish a GTL (gas-to-liquid) industry, being currently pushed by the shale gas revolution. From the viewpoint of GTL industry, developing a catalyst for CO₂ reforming of CH₄ is a challenge, because they need a very high production rate to make the huge GTL methane reformer as small as possible. In addition, since both CO₂ and CH₄ give off carbon deposits that deactivate non-precious metallic catalysts very quickly, the total design of catalyst support and supported metallic nanoparticles is necessary. We present a simple but useful method to prepare bimodal catalyst support, where small pores are formed inside large ones during the self-organization of nanoparticles from solution. Large pores enhance the mass transfer rate, while small pores provide large surface areas to disperse active metallic nanoparticles. More importantly, building materials for small pores can also be used as promoters or cocatalysts to further enhance the total activity and stability. Produced syngas from methane reforming is generally catalytically converted in situ via one of two main routes. The first is to use Fischer-Tropsch synthesis (FTS), a process that catalytically converts syngas to hydrocarbons of varying molecular weights. The second is methanol synthesis. The latter has better atomic economy, since the oxygen atom in CO is included in the product and CO₂ can be blended into syngas as a reactant. However, production of methanol is very inefficient in this reaction: only 10-15% one-pass conversion typically at 5.0-10.0 MPa and 523-573 K, due to the severe thermodynamic limitations of this exothermal reaction (CO + 2H₂ = CH₃OH). In this Account, we propose and develop a new route of low-temperature methanol synthesis from CO₂-containing syngas only by adding alcohols, including methanol itself. These alcohols act as homogeneous cocatalysts and the solvent, realizing 70-100% one-pass conversion at only 5.0 MPa and 443 K. The key step is the reaction of the adsorbed formate species with alcohols to yield ester species at low temperatures, followed by the hydrogenation of ester by hydrogen atoms on metallic Cu. This changes the normal reaction path of conventional, high-temperature methanol synthesis from formate via methoxy to methanol.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
亦玉完成签到,获得积分10
刚刚
NZH关闭了NZH文献求助
1秒前
AAAADiao完成签到 ,获得积分10
2秒前
糖果发布了新的文献求助10
3秒前
Liangstar完成签到 ,获得积分10
6秒前
tanhaowen完成签到 ,获得积分10
8秒前
9秒前
zqq完成签到,获得积分10
10秒前
12秒前
Ikaros发布了新的文献求助20
12秒前
13秒前
完美世界应助糖果采纳,获得10
14秒前
18秒前
cyp发布了新的文献求助10
18秒前
闪闪的摩托完成签到 ,获得积分10
18秒前
勤奋小张完成签到,获得积分10
18秒前
whh完成签到,获得积分10
18秒前
Saw完成签到,获得积分10
21秒前
随聚随分完成签到 ,获得积分10
21秒前
俭朴映阳完成签到 ,获得积分10
22秒前
易槐完成签到,获得积分10
22秒前
23秒前
汉堡包应助cyp采纳,获得10
23秒前
wubuking完成签到 ,获得积分10
24秒前
崔宁宁完成签到 ,获得积分10
25秒前
郝逍遥发布了新的文献求助10
26秒前
星辰大海应助小羊咩咩咩采纳,获得10
30秒前
wpie99应助春秋采纳,获得10
31秒前
32秒前
xxh完成签到,获得积分10
33秒前
liu完成签到 ,获得积分10
33秒前
Cu_wx完成签到,获得积分10
33秒前
phd完成签到,获得积分10
34秒前
许诺完成签到,获得积分10
34秒前
of完成签到 ,获得积分10
37秒前
cyp发布了新的文献求助10
37秒前
田様应助凡`采纳,获得10
38秒前
alleyyy发布了新的文献求助10
38秒前
犯困完成签到,获得积分10
40秒前
40秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461234
求助须知:如何正确求助?哪些是违规求助? 3054927
关于积分的说明 9045666
捐赠科研通 2744832
什么是DOI,文献DOI怎么找? 1505707
科研通“疑难数据库(出版商)”最低求助积分说明 695794
邀请新用户注册赠送积分活动 695233