Robotic vertical jumping agility via series-elastic power modulation

跳跃的 系列(地层学) 调制(音乐) 功率(物理) 计算机科学 控制理论(社会学) 物理 人工智能 地质学 声学 量子力学 古生物学 控制(管理)
作者
Duncan W. Haldane,Mark Plecnik,Justin K. Yim,Ronald S. Fearing
出处
期刊:Science robotics [American Association for the Advancement of Science (AAAS)]
卷期号:1 (1) 被引量:312
标识
DOI:10.1126/scirobotics.aag2048
摘要

Several arboreal mammals have the ability to rapidly and repeatedly jump vertical distances of 2 m, starting from rest. We characterize this performance by a metric we call vertical jumping agility. Through basic kinetic relations, we show that this agility metric is fundamentally constrained by available actuator power. Although rapid high jumping is an important performance characteristic, the ability to control forces during stance also appears critical for sophisticated behaviors. The animal with the highest vertical jumping agility, the galago (Galagosenegalensis), is known to use a power-modulating strategy to obtain higher peak power than that of muscle alone. Few previous robots have used series-elastic power modulation (achieved by combining series-elastic actuation with variable mechanical advantage), and because of motor power limits, the best current robot has a vertical jumping agility of only 55% of a galago. Through use of a specialized leg mechanism designed to enhance power modulation, we constructed a jumping robot that achieved 78% of the vertical jumping agility of a galago. Agile robots can explore venues of locomotion that were not previously attainable. We demonstrate this with a wall jump, where the robot leaps from the floor to a wall and then springs off the wall to reach a net height that is greater than that accessible by a single jump. Our results show that series-elastic power modulation is an actuation strategy that enables a clade of vertically agile robots.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半生发布了新的文献求助30
1秒前
1秒前
成就梦松完成签到,获得积分10
1秒前
byyyy完成签到,获得积分10
1秒前
温暖的俊驰完成签到,获得积分10
2秒前
Isabel完成签到,获得积分10
2秒前
yx应助陈强采纳,获得30
3秒前
sokach发布了新的文献求助10
5秒前
缓慢荔枝发布了新的文献求助10
5秒前
123发布了新的文献求助10
6秒前
天御雪完成签到,获得积分10
6秒前
gen关闭了gen文献求助
6秒前
6秒前
科研通AI5应助oldlee采纳,获得10
7秒前
7秒前
MADKAI发布了新的文献求助10
7秒前
哈哈悦完成签到,获得积分10
7秒前
赘婿应助duoduozs采纳,获得10
7秒前
kai完成签到,获得积分10
8秒前
8秒前
情怀应助xhy采纳,获得10
8秒前
整齐的灭绝完成签到 ,获得积分10
9秒前
充电宝应助船舵采纳,获得10
9秒前
lqphysics完成签到,获得积分10
9秒前
9秒前
小小完成签到 ,获得积分10
10秒前
320me666完成签到,获得积分10
11秒前
11秒前
velpro发布了新的文献求助10
12秒前
科研通AI5应助masu采纳,获得10
12秒前
小狸跟你拼啦完成签到,获得积分10
12秒前
寂寞的灵发布了新的文献求助10
12秒前
13秒前
honey完成签到,获得积分10
13秒前
白宝宝北北白应助eee采纳,获得10
13秒前
gcc应助HZW采纳,获得20
14秒前
14秒前
完美世界应助Hu111采纳,获得10
15秒前
khaosyi完成签到 ,获得积分10
16秒前
哇哈哈完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672