A Probabilistic Dynamic Material Flow Analysis Model for Chinese Urban Housing Stock

库存(枪支) 物流分析 城市化 计量经济学 人口 概率逻辑 环境科学 业务 经济 地理 统计 数学 生态学 经济增长 人口学 考古 社会学 生物
作者
Zhi Cao,Lei Shen,Shuai Zhong,Litao Liu,Hanxiao Kong,Yanzhi Sun
出处
期刊:Journal of Industrial Ecology [Wiley]
卷期号:22 (2): 377-391 被引量:46
标识
DOI:10.1111/jiec.12579
摘要

Summary The stock‐driven dynamic material flow analysis (MFA) model is one of the prevalent tools to investigate the evolution and related material metabolism of the building stock. There exists substantial uncertainty inherent to input parameters of the stock‐driven dynamic building stock MFA model, which has not been comprehensively evaluated yet. In this study, a probabilistic, stock‐driven dynamic MFA model is established and China's urban housing stock is selected as the empirical case. This probabilistic dynamic MFA model has the ability to depict the future evolution pathway of China's housing stock and capture uncertainties in its material stock, inflow, and outflow. By means of probabilistic methods, a detailed and transparent estimation of China's housing stock and its material metabolism behavior is presented. Under a scenario with a saturation level of the population, urbanization, and living space, the median value of the urban housing stock area, newly completed area, and demolished area would peak at around 49, 2.2, and 2.2 billion square meters, respectively. The corresponding material stock and flows are 79, 3.5, and 3.3 billion tonnes, respectively. Uncertainties regarding housing stock and its material stock and flows are non‐negligible. Relative uncertainties of the material stock and flows are above 50%. The uncertainty importance analysis demonstrates that the material intensity and the total population are major contributions to the uncertainty. Policy makers in the housing sector should consider the material efficiency as an essential policy to mitigate material flows of the urban building stock and to lower the risk of policy failures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Lori发布了新的文献求助10
1秒前
3秒前
4秒前
Hello应助温良恭俭让采纳,获得10
4秒前
hhj发布了新的文献求助10
6秒前
7秒前
8秒前
科研小兔发布了新的文献求助10
8秒前
尊敬的钻石完成签到,获得积分10
9秒前
CipherSage应助嘉嘉sone采纳,获得10
10秒前
英姑应助XHR33采纳,获得10
10秒前
10秒前
英俊的铭应助Alan采纳,获得10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
陈的住气发布了新的文献求助10
11秒前
wenduoxu完成签到,获得积分10
11秒前
12秒前
X悦发布了新的文献求助10
12秒前
鲜艳的三毒完成签到,获得积分10
12秒前
搜集达人应助小小月采纳,获得10
12秒前
12秒前
852应助Bonnie采纳,获得10
13秒前
陈的住气发布了新的文献求助10
13秒前
yesyesnono完成签到,获得积分10
14秒前
陈的住气发布了新的文献求助30
15秒前
15秒前
852应助jimmy采纳,获得10
16秒前
16秒前
16秒前
16秒前
陈的住气发布了新的文献求助10
17秒前
Orange应助科研小兔采纳,获得10
18秒前
科研通AI6.1应助X悦采纳,获得10
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
陈的住气发布了新的文献求助10
19秒前
陈的住气发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771589
求助须知:如何正确求助?哪些是违规求助? 5592681
关于积分的说明 15427933
捐赠科研通 4904901
什么是DOI,文献DOI怎么找? 2639075
邀请新用户注册赠送积分活动 1586878
关于科研通互助平台的介绍 1541879