A Probabilistic Dynamic Material Flow Analysis Model for Chinese Urban Housing Stock

库存(枪支) 物流分析 城市化 计量经济学 人口 概率逻辑 环境科学 业务 经济 地理 统计 数学 生态学 经济增长 人口学 考古 社会学 生物
作者
Zhi Cao,Lei Shen,Shuai Zhong,Litao Liu,Hanxiao Kong,Yanzhi Sun
出处
期刊:Journal of Industrial Ecology [Wiley]
卷期号:22 (2): 377-391 被引量:46
标识
DOI:10.1111/jiec.12579
摘要

Summary The stock‐driven dynamic material flow analysis (MFA) model is one of the prevalent tools to investigate the evolution and related material metabolism of the building stock. There exists substantial uncertainty inherent to input parameters of the stock‐driven dynamic building stock MFA model, which has not been comprehensively evaluated yet. In this study, a probabilistic, stock‐driven dynamic MFA model is established and China's urban housing stock is selected as the empirical case. This probabilistic dynamic MFA model has the ability to depict the future evolution pathway of China's housing stock and capture uncertainties in its material stock, inflow, and outflow. By means of probabilistic methods, a detailed and transparent estimation of China's housing stock and its material metabolism behavior is presented. Under a scenario with a saturation level of the population, urbanization, and living space, the median value of the urban housing stock area, newly completed area, and demolished area would peak at around 49, 2.2, and 2.2 billion square meters, respectively. The corresponding material stock and flows are 79, 3.5, and 3.3 billion tonnes, respectively. Uncertainties regarding housing stock and its material stock and flows are non‐negligible. Relative uncertainties of the material stock and flows are above 50%. The uncertainty importance analysis demonstrates that the material intensity and the total population are major contributions to the uncertainty. Policy makers in the housing sector should consider the material efficiency as an essential policy to mitigate material flows of the urban building stock and to lower the risk of policy failures.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
生鱼安乐完成签到,获得积分10
4秒前
9秒前
11111发布了新的文献求助10
11秒前
传奇3应助铮铮铁骨采纳,获得100
16秒前
小荷才露尖尖角完成签到,获得积分10
22秒前
23秒前
qiao完成签到,获得积分10
27秒前
tianfu1899发布了新的文献求助10
29秒前
zyq完成签到 ,获得积分10
33秒前
阿姨洗铁路完成签到 ,获得积分10
35秒前
38秒前
地瓜完成签到,获得积分10
39秒前
汉堡包应助贪玩的无招采纳,获得10
39秒前
海石酸辣完成签到 ,获得积分10
44秒前
qiao发布了新的文献求助10
46秒前
57秒前
练得身形似鹤形完成签到 ,获得积分10
57秒前
11111发布了新的文献求助10
58秒前
李爱国应助贪玩的无招采纳,获得50
59秒前
swan完成签到 ,获得积分10
59秒前
懒洋洋发布了新的文献求助10
1分钟前
从容的香菇完成签到,获得积分10
1分钟前
欢喜可乐完成签到 ,获得积分10
1分钟前
清欢渡完成签到,获得积分10
1分钟前
1分钟前
1分钟前
wickedzz发布了新的文献求助10
1分钟前
达利园发布了新的文献求助10
1分钟前
852应助11111采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5852066
求助须知:如何正确求助?哪些是违规求助? 6275741
关于积分的说明 15627645
捐赠科研通 4967992
什么是DOI,文献DOI怎么找? 2678855
邀请新用户注册赠送积分活动 1623112
关于科研通互助平台的介绍 1579503