亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Probabilistic Dynamic Material Flow Analysis Model for Chinese Urban Housing Stock

库存(枪支) 物流分析 城市化 计量经济学 人口 概率逻辑 环境科学 业务 经济 地理 统计 数学 生态学 经济增长 人口学 考古 社会学 生物
作者
Zhi Cao,Lei Shen,Shuai Zhong,Litao Liu,Hanxiao Kong,Yanzhi Sun
出处
期刊:Journal of Industrial Ecology [Wiley]
卷期号:22 (2): 377-391 被引量:46
标识
DOI:10.1111/jiec.12579
摘要

Summary The stock‐driven dynamic material flow analysis (MFA) model is one of the prevalent tools to investigate the evolution and related material metabolism of the building stock. There exists substantial uncertainty inherent to input parameters of the stock‐driven dynamic building stock MFA model, which has not been comprehensively evaluated yet. In this study, a probabilistic, stock‐driven dynamic MFA model is established and China's urban housing stock is selected as the empirical case. This probabilistic dynamic MFA model has the ability to depict the future evolution pathway of China's housing stock and capture uncertainties in its material stock, inflow, and outflow. By means of probabilistic methods, a detailed and transparent estimation of China's housing stock and its material metabolism behavior is presented. Under a scenario with a saturation level of the population, urbanization, and living space, the median value of the urban housing stock area, newly completed area, and demolished area would peak at around 49, 2.2, and 2.2 billion square meters, respectively. The corresponding material stock and flows are 79, 3.5, and 3.3 billion tonnes, respectively. Uncertainties regarding housing stock and its material stock and flows are non‐negligible. Relative uncertainties of the material stock and flows are above 50%. The uncertainty importance analysis demonstrates that the material intensity and the total population are major contributions to the uncertainty. Policy makers in the housing sector should consider the material efficiency as an essential policy to mitigate material flows of the urban building stock and to lower the risk of policy failures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zqq完成签到,获得积分0
13秒前
小葵发布了新的文献求助30
19秒前
研友_GZ3zRn完成签到 ,获得积分0
23秒前
heartyi完成签到 ,获得积分10
23秒前
50秒前
科研通AI6应助科研通管家采纳,获得10
51秒前
李爱国应助科研通管家采纳,获得10
51秒前
lxl发布了新的文献求助10
55秒前
qiaorankongling完成签到 ,获得积分10
1分钟前
阉太狼完成签到,获得积分10
1分钟前
汉堡包应助lll采纳,获得10
1分钟前
1分钟前
牧沛凝发布了新的文献求助10
1分钟前
周娅敏完成签到,获得积分10
1分钟前
义气丹雪应助miniou采纳,获得10
1分钟前
1分钟前
1分钟前
周娅敏发布了新的文献求助30
1分钟前
梨园春完成签到,获得积分10
1分钟前
1分钟前
友好绿柏完成签到,获得积分10
1分钟前
yexu完成签到,获得积分10
1分钟前
lll发布了新的文献求助10
1分钟前
霓霓完成签到,获得积分10
2分钟前
lll完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
cheerfulsmurfs完成签到,获得积分10
2分钟前
微笑的匪完成签到,获得积分20
2分钟前
我是老大应助zeran采纳,获得10
2分钟前
张嘉雯完成签到 ,获得积分10
2分钟前
2分钟前
希望天下0贩的0应助JJ采纳,获得10
2分钟前
丘比特应助周娅敏采纳,获得10
2分钟前
航biubiu发布了新的文献求助10
2分钟前
2分钟前
梨园春发布了新的文献求助10
2分钟前
zeran发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
爆米花应助航biubiu采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714432
求助须知:如何正确求助?哪些是违规求助? 5223970
关于积分的说明 15273294
捐赠科研通 4865856
什么是DOI,文献DOI怎么找? 2612444
邀请新用户注册赠送积分活动 1562516
关于科研通互助平台的介绍 1519799