A Probabilistic Dynamic Material Flow Analysis Model for Chinese Urban Housing Stock

库存(枪支) 物流分析 城市化 计量经济学 人口 概率逻辑 环境科学 业务 经济 地理 统计 数学 生态学 经济增长 人口学 社会学 考古 生物
作者
Zhi Cao,Lei Shen,Shuai Zhong,Litao Liu,Hanxiao Kong,Yanzhi Sun
出处
期刊:Journal of Industrial Ecology [Wiley]
卷期号:22 (2): 377-391 被引量:46
标识
DOI:10.1111/jiec.12579
摘要

Summary The stock‐driven dynamic material flow analysis (MFA) model is one of the prevalent tools to investigate the evolution and related material metabolism of the building stock. There exists substantial uncertainty inherent to input parameters of the stock‐driven dynamic building stock MFA model, which has not been comprehensively evaluated yet. In this study, a probabilistic, stock‐driven dynamic MFA model is established and China's urban housing stock is selected as the empirical case. This probabilistic dynamic MFA model has the ability to depict the future evolution pathway of China's housing stock and capture uncertainties in its material stock, inflow, and outflow. By means of probabilistic methods, a detailed and transparent estimation of China's housing stock and its material metabolism behavior is presented. Under a scenario with a saturation level of the population, urbanization, and living space, the median value of the urban housing stock area, newly completed area, and demolished area would peak at around 49, 2.2, and 2.2 billion square meters, respectively. The corresponding material stock and flows are 79, 3.5, and 3.3 billion tonnes, respectively. Uncertainties regarding housing stock and its material stock and flows are non‐negligible. Relative uncertainties of the material stock and flows are above 50%. The uncertainty importance analysis demonstrates that the material intensity and the total population are major contributions to the uncertainty. Policy makers in the housing sector should consider the material efficiency as an essential policy to mitigate material flows of the urban building stock and to lower the risk of policy failures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
10秒前
June完成签到,获得积分10
12秒前
xz发布了新的文献求助10
14秒前
sll完成签到 ,获得积分10
16秒前
zx完成签到 ,获得积分10
16秒前
t铁核桃1985完成签到 ,获得积分10
18秒前
xzy998应助科研通管家采纳,获得10
23秒前
万能图书馆应助科研通管家采纳,获得150
23秒前
科目三应助科研通管家采纳,获得10
23秒前
完美世界应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
丘比特应助科研通管家采纳,获得10
23秒前
23秒前
MC123完成签到,获得积分10
24秒前
美好灵寒完成签到 ,获得积分10
24秒前
ESC惠子子子子子完成签到 ,获得积分10
25秒前
着急的果汁完成签到 ,获得积分10
26秒前
zz完成签到,获得积分10
31秒前
科研通AI5应助舒心的初露采纳,获得10
32秒前
安嫔完成签到 ,获得积分10
34秒前
我是老大应助lisen采纳,获得10
36秒前
saywhy完成签到 ,获得积分10
37秒前
38秒前
猪猪hero发布了新的文献求助10
40秒前
43秒前
mojito完成签到 ,获得积分10
43秒前
fafafa发布了新的文献求助10
44秒前
Attendre完成签到 ,获得积分10
44秒前
zqy完成签到 ,获得积分10
48秒前
Anonymous完成签到,获得积分10
53秒前
行走的猫完成签到 ,获得积分10
56秒前
碗碗豆喵完成签到 ,获得积分10
56秒前
眼睛大的薯片完成签到 ,获得积分10
57秒前
58秒前
俊逸吐司完成签到 ,获得积分10
1分钟前
标致小翠完成签到,获得积分10
1分钟前
快乐谷蓝完成签到,获得积分10
1分钟前
善学以致用应助fafafa采纳,获得10
1分钟前
斯文的傲珊完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5188071
求助须知:如何正确求助?哪些是违规求助? 4372504
关于积分的说明 13613427
捐赠科研通 4225688
什么是DOI,文献DOI怎么找? 2317866
邀请新用户注册赠送积分活动 1316437
关于科研通互助平台的介绍 1266095