多元统计
多元方差分析
多元分析
计算机科学
背景(考古学)
优势和劣势
差异(会计)
结构方程建模
统计
样品(材料)
回归分析
变量
数据科学
计量经济学
数学
机器学习
心理学
地理
社会心理学
化学
会计
考古
色谱法
业务
标识
DOI:10.1093/acprof:oso/9780199773596.001.0001
摘要
Abstract Multivariate procedures allow social workers and other human services researchers to analyze complex, multidimensional social problems and interventions in ways that minimize oversimplification. This book provides an introduction to four procedures for the analysis of multiple dependent variables: multivariate analysis of variance (MANOVA), multivariate analysis of covariance (MANCOVA), multivariate multiple regression (MMR), and structural equation modeling (SEM). Each procedure is presented in a way that allows readers to compare and contrast them in terms of appropriate research context; required statistical assumptions, including levels of measurement of variables to be modeled; analytical steps; sample size; and strengths and weaknesses. This book facilitates course extensibility in scope and depth by allowing instructors to supplement course content with rigorous statistical procedures. The book provides detailed annotated examples using Stata, SPSS (PASW), SAS, and Amos.
科研通智能强力驱动
Strongly Powered by AbleSci AI