已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Comparison of dissimilarity measures for cluster analysis of X-ray diffraction data from combinatorial libraries

计算机科学 度量(数据仓库) 衍射 皮尔逊积矩相关系数 图像扭曲 数据挖掘 统计 人工智能 数学 光学 物理
作者
Yuma Iwasaki,A. Gilad Kusne,Ichiro Takeuchi
出处
期刊:npj computational materials [Springer Nature]
卷期号:3 (1) 被引量:85
标识
DOI:10.1038/s41524-017-0006-2
摘要

Abstract Machine learning techniques have proven invaluable to manage the ever growing volume of materials research data produced as developments continue in high-throughput materials simulation, fabrication, and characterization. In particular, machine learning techniques have been demonstrated for their utility in rapidly and automatically identifying potential composition–phase maps from structural data characterization of composition spread libraries, enabling rapid materials fabrication-structure-property analysis and functional materials discovery. A key issue in development of an automated phase-diagram determination method is the choice of dissimilarity measure, or kernel function. The desired measure reduces the impact of confounding structural data issues on analysis performance. The issues include peak height changes and peak shifting due to lattice constant change as a function of composition. In this work, we investigate the choice of dissimilarity measure in X-ray diffraction-based structure analysis and the choice of measure’s performance impact on automatic composition-phase map determination. Nine dissimilarity measures are investigated for their impact in analyzing X-ray diffraction patterns for a Fe–Co–Ni ternary alloy composition spread. The cosine, Pearson correlation coefficient, and Jensen–Shannon divergence measures are shown to provide the best performance in the presence of peak height change and peak shifting (due to lattice constant change) when the magnitude of peak shifting is unknown. With prior knowledge of the maximum peak shifting, dynamic time warping in a normalized constrained mode provides the best performance. This work also serves to demonstrate a strategy for rapid analysis of a large number of X-ray diffraction patterns in general beyond data from combinatorial libraries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
复方蛋酥卷完成签到,获得积分10
4秒前
十三号失眠完成签到 ,获得积分10
7秒前
7秒前
不安太阳完成签到,获得积分10
13秒前
小宋给夏侯德东的求助进行了留言
18秒前
22秒前
在水一方应助沛文采纳,获得30
24秒前
24秒前
25秒前
26秒前
英姑应助郭世杰采纳,获得10
26秒前
26秒前
27秒前
27秒前
Sofia发布了新的文献求助10
30秒前
31秒前
31秒前
31秒前
Sofia发布了新的文献求助10
31秒前
Sofia发布了新的文献求助30
31秒前
Sofia发布了新的文献求助30
31秒前
沐雨发布了新的文献求助10
33秒前
情怀应助淡蓝色采纳,获得10
33秒前
PPkk发布了新的文献求助10
34秒前
俗人发布了新的文献求助10
35秒前
35秒前
Bonnie发布了新的文献求助10
36秒前
科研通AI2S应助郭世杰采纳,获得10
38秒前
39秒前
研友_宋文昊完成签到,获得积分10
40秒前
45秒前
yangfan发布了新的文献求助10
47秒前
47秒前
48秒前
早点发SCI发布了新的文献求助30
48秒前
50秒前
CodeCraft应助追月的猪采纳,获得10
51秒前
华仔应助gzp采纳,获得10
55秒前
三七完成签到 ,获得积分10
55秒前
冷艳的孤晴完成签到,获得积分20
58秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459948
求助须知:如何正确求助?哪些是违规求助? 3054270
关于积分的说明 9041229
捐赠科研通 2743494
什么是DOI,文献DOI怎么找? 1504953
科研通“疑难数据库(出版商)”最低求助积分说明 695556
邀请新用户注册赠送积分活动 694777