Deep Learning‐Based Crack Damage Detection Using Convolutional Neural Networks

卷积神经网络 索贝尔算子 计算机科学 深度学习 稳健性(进化) 像素 计算机视觉 人工智能 Canny边缘检测器 影子(心理学) 模式识别(心理学) 适应性 图像(数学) 边缘检测 图像处理 化学 心理治疗师 基因 生物 生物化学 生态学 心理学
作者
Young‐Jin Cha,Wooram Choi,Oral Büyüköztürk
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:32 (5): 361-378 被引量:2578
标识
DOI:10.1111/mice.12263
摘要

Abstract A number of image processing techniques (IPTs) have been implemented for detecting civil infrastructure defects to partially replace human‐conducted onsite inspections. These IPTs are primarily used to manipulate images to extract defect features, such as cracks in concrete and steel surfaces. However, the extensively varying real‐world situations (e.g., lighting and shadow changes) can lead to challenges to the wide adoption of IPTs. To overcome these challenges, this article proposes a vision‐based method using a deep architecture of convolutional neural networks (CNNs) for detecting concrete cracks without calculating the defect features. As CNNs are capable of learning image features automatically, the proposed method works without the conjugation of IPTs for extracting features. The designed CNN is trained on 40 K images of 256 × 256 pixel resolutions and, consequently, records with about 98% accuracy. The trained CNN is combined with a sliding window technique to scan any image size larger than 256 × 256 pixel resolutions. The robustness and adaptability of the proposed approach are tested on 55 images of 5,888 × 3,584 pixel resolutions taken from a different structure which is not used for training and validation processes under various conditions (e.g., strong light spot, shadows, and very thin cracks). Comparative studies are conducted to examine the performance of the proposed CNN using traditional Canny and Sobel edge detection methods. The results show that the proposed method shows quite better performances and can indeed find concrete cracks in realistic situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xima发布了新的文献求助10
1秒前
无名发布了新的文献求助10
1秒前
斯文败类应助朴朴呀采纳,获得10
1秒前
CipherSage应助十三采纳,获得10
1秒前
1秒前
慢慢发布了新的文献求助10
2秒前
鳗鱼涵梅发布了新的文献求助10
3秒前
4秒前
陈平安发布了新的文献求助10
4秒前
李木槿发布了新的文献求助10
5秒前
6秒前
刘佳发布了新的文献求助10
7秒前
Joe完成签到,获得积分20
8秒前
8秒前
10秒前
wonder完成签到 ,获得积分10
10秒前
10秒前
11秒前
11秒前
Joe发布了新的文献求助10
12秒前
12秒前
大大彬完成签到 ,获得积分10
12秒前
12秒前
13秒前
执着陈发布了新的文献求助10
14秒前
如意寒烟发布了新的文献求助10
14秒前
晶晶完成签到,获得积分10
15秒前
15秒前
wwwweer完成签到,获得积分20
16秒前
17秒前
窦誉发布了新的文献求助30
17秒前
科研通AI5应助cruise采纳,获得10
17秒前
Jiawen发布了新的文献求助10
17秒前
小烦同学完成签到,获得积分10
17秒前
哆啦发布了新的文献求助10
17秒前
十三发布了新的文献求助10
17秒前
科研通AI5应助科研小奶狗采纳,获得10
18秒前
自由质数完成签到,获得积分10
19秒前
19秒前
loski完成签到,获得积分10
19秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488751
求助须知:如何正确求助?哪些是违规求助? 3076283
关于积分的说明 9144615
捐赠科研通 2768593
什么是DOI,文献DOI怎么找? 1519274
邀请新用户注册赠送积分活动 703714
科研通“疑难数据库(出版商)”最低求助积分说明 701952