Deep Learning‐Based Crack Damage Detection Using Convolutional Neural Networks

卷积神经网络 索贝尔算子 计算机科学 深度学习 稳健性(进化) 像素 计算机视觉 人工智能 Canny边缘检测器 影子(心理学) 模式识别(心理学) 适应性 图像(数学) 边缘检测 图像处理 化学 心理治疗师 基因 生物 生物化学 生态学 心理学
作者
Young‐Jin Cha,Wooram Choi,Oral Büyüköztürk
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:32 (5): 361-378 被引量:2729
标识
DOI:10.1111/mice.12263
摘要

Abstract A number of image processing techniques (IPTs) have been implemented for detecting civil infrastructure defects to partially replace human‐conducted onsite inspections. These IPTs are primarily used to manipulate images to extract defect features, such as cracks in concrete and steel surfaces. However, the extensively varying real‐world situations (e.g., lighting and shadow changes) can lead to challenges to the wide adoption of IPTs. To overcome these challenges, this article proposes a vision‐based method using a deep architecture of convolutional neural networks (CNNs) for detecting concrete cracks without calculating the defect features. As CNNs are capable of learning image features automatically, the proposed method works without the conjugation of IPTs for extracting features. The designed CNN is trained on 40 K images of 256 × 256 pixel resolutions and, consequently, records with about 98% accuracy. The trained CNN is combined with a sliding window technique to scan any image size larger than 256 × 256 pixel resolutions. The robustness and adaptability of the proposed approach are tested on 55 images of 5,888 × 3,584 pixel resolutions taken from a different structure which is not used for training and validation processes under various conditions (e.g., strong light spot, shadows, and very thin cracks). Comparative studies are conducted to examine the performance of the proposed CNN using traditional Canny and Sobel edge detection methods. The results show that the proposed method shows quite better performances and can indeed find concrete cracks in realistic situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
糊涂涂发布了新的文献求助30
1秒前
1秒前
1秒前
狗东西发布了新的文献求助10
1秒前
科研工具人完成签到,获得积分10
2秒前
yulia发布了新的文献求助20
2秒前
2秒前
bkagyin应助小巧风华采纳,获得10
2秒前
whutyoyo完成签到,获得积分10
2秒前
dfsdf完成签到,获得积分10
3秒前
wwz发布了新的文献求助10
3秒前
小蚊子发布了新的文献求助10
4秒前
思维隋完成签到 ,获得积分10
4秒前
4秒前
我陈雯雯实名上网完成签到,获得积分10
4秒前
meng发布了新的文献求助50
4秒前
WW发布了新的文献求助30
4秒前
4秒前
温柔的婷完成签到,获得积分10
5秒前
奥里给发布了新的文献求助10
5秒前
6秒前
hhh发布了新的文献求助10
6秒前
科研通AI2S应助小伊采纳,获得10
6秒前
xueyan发布了新的文献求助10
7秒前
7秒前
7秒前
隐形曼青应助哈哈采纳,获得10
7秒前
小蘑菇应助whutyoyo采纳,获得10
7秒前
打打应助狗东西采纳,获得10
8秒前
大模型应助wwz采纳,获得10
8秒前
8秒前
常富育完成签到,获得积分10
9秒前
pwy完成签到,获得积分10
9秒前
NexusExplorer应助Breathe采纳,获得10
9秒前
烟花应助小蚊子采纳,获得10
9秒前
loong发布了新的文献求助10
11秒前
123发布了新的文献求助10
11秒前
奥里给完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403