Deep Learning‐Based Crack Damage Detection Using Convolutional Neural Networks

卷积神经网络 索贝尔算子 计算机科学 深度学习 稳健性(进化) 像素 计算机视觉 人工智能 Canny边缘检测器 影子(心理学) 模式识别(心理学) 适应性 图像(数学) 边缘检测 图像处理 化学 心理治疗师 基因 生物 生物化学 生态学 心理学
作者
Young‐Jin Cha,Wooram Choi,Oral Büyüköztürk
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:32 (5): 361-378 被引量:2952
标识
DOI:10.1111/mice.12263
摘要

Abstract A number of image processing techniques (IPTs) have been implemented for detecting civil infrastructure defects to partially replace human‐conducted onsite inspections. These IPTs are primarily used to manipulate images to extract defect features, such as cracks in concrete and steel surfaces. However, the extensively varying real‐world situations (e.g., lighting and shadow changes) can lead to challenges to the wide adoption of IPTs. To overcome these challenges, this article proposes a vision‐based method using a deep architecture of convolutional neural networks (CNNs) for detecting concrete cracks without calculating the defect features. As CNNs are capable of learning image features automatically, the proposed method works without the conjugation of IPTs for extracting features. The designed CNN is trained on 40 K images of 256 × 256 pixel resolutions and, consequently, records with about 98% accuracy. The trained CNN is combined with a sliding window technique to scan any image size larger than 256 × 256 pixel resolutions. The robustness and adaptability of the proposed approach are tested on 55 images of 5,888 × 3,584 pixel resolutions taken from a different structure which is not used for training and validation processes under various conditions (e.g., strong light spot, shadows, and very thin cracks). Comparative studies are conducted to examine the performance of the proposed CNN using traditional Canny and Sobel edge detection methods. The results show that the proposed method shows quite better performances and can indeed find concrete cracks in realistic situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
乐乐应助Surge采纳,获得10
1秒前
1秒前
CipherSage应助水123采纳,获得10
1秒前
随便起个吧完成签到 ,获得积分10
1秒前
May发布了新的文献求助10
1秒前
夜寻发布了新的文献求助10
2秒前
1111111完成签到,获得积分10
2秒前
2秒前
夏墨发布了新的文献求助10
2秒前
2秒前
2秒前
有魅力的雨梅完成签到,获得积分10
3秒前
Ava应助龙行天下采纳,获得10
3秒前
策略完成签到,获得积分10
3秒前
Hhh完成签到 ,获得积分10
3秒前
脆脆鲨发布了新的文献求助10
3秒前
XX发布了新的文献求助10
3秒前
4秒前
rsy完成签到,获得积分10
4秒前
4秒前
5秒前
liao应助托勒兰德安德烈采纳,获得10
5秒前
5秒前
6秒前
Surge完成签到,获得积分10
6秒前
聪明邪欢完成签到,获得积分10
6秒前
Linjiannan发布了新的文献求助10
6秒前
灌水大王发布了新的文献求助10
6秒前
6秒前
6秒前
JamesPei应助铛铛铛采纳,获得10
7秒前
7秒前
邓晓云完成签到,获得积分10
7秒前
虚拟的若发布了新的文献求助10
8秒前
8秒前
耍酷龙猫发布了新的文献求助10
8秒前
来杯冰美式完成签到,获得积分10
8秒前
Lucas应助Han采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667772
求助须知:如何正确求助?哪些是违规求助? 4887765
关于积分的说明 15121847
捐赠科研通 4826643
什么是DOI,文献DOI怎么找? 2584209
邀请新用户注册赠送积分活动 1538157
关于科研通互助平台的介绍 1496386