亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning‐Based Crack Damage Detection Using Convolutional Neural Networks

卷积神经网络 索贝尔算子 计算机科学 深度学习 稳健性(进化) 像素 计算机视觉 人工智能 Canny边缘检测器 影子(心理学) 模式识别(心理学) 适应性 图像(数学) 边缘检测 图像处理 化学 心理治疗师 基因 生物 生物化学 生态学 心理学
作者
Young‐Jin Cha,Wooram Choi,Oral Büyüköztürk
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:32 (5): 361-378 被引量:2898
标识
DOI:10.1111/mice.12263
摘要

Abstract A number of image processing techniques (IPTs) have been implemented for detecting civil infrastructure defects to partially replace human‐conducted onsite inspections. These IPTs are primarily used to manipulate images to extract defect features, such as cracks in concrete and steel surfaces. However, the extensively varying real‐world situations (e.g., lighting and shadow changes) can lead to challenges to the wide adoption of IPTs. To overcome these challenges, this article proposes a vision‐based method using a deep architecture of convolutional neural networks (CNNs) for detecting concrete cracks without calculating the defect features. As CNNs are capable of learning image features automatically, the proposed method works without the conjugation of IPTs for extracting features. The designed CNN is trained on 40 K images of 256 × 256 pixel resolutions and, consequently, records with about 98% accuracy. The trained CNN is combined with a sliding window technique to scan any image size larger than 256 × 256 pixel resolutions. The robustness and adaptability of the proposed approach are tested on 55 images of 5,888 × 3,584 pixel resolutions taken from a different structure which is not used for training and validation processes under various conditions (e.g., strong light spot, shadows, and very thin cracks). Comparative studies are conducted to examine the performance of the proposed CNN using traditional Canny and Sobel edge detection methods. The results show that the proposed method shows quite better performances and can indeed find concrete cracks in realistic situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
5秒前
顺颂时祺发布了新的文献求助10
8秒前
11秒前
37秒前
FG发布了新的文献求助10
41秒前
44秒前
48秒前
tt完成签到,获得积分20
48秒前
tt发布了新的文献求助10
51秒前
ceeray23发布了新的文献求助30
52秒前
55秒前
ho应助科研通管家采纳,获得10
56秒前
ho应助科研通管家采纳,获得10
56秒前
kentonchow应助气945采纳,获得10
56秒前
1分钟前
学术小菜鸟完成签到 ,获得积分10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
洁净的千凡完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Alice发布了新的文献求助30
1分钟前
1分钟前
1分钟前
Shawn发布了新的文献求助10
2分钟前
Alice完成签到,获得积分20
2分钟前
cao_bq完成签到,获得积分10
2分钟前
2分钟前
2分钟前
genius_yue发布了新的文献求助30
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
ho应助科研通管家采纳,获得10
2分钟前
3分钟前
hsj完成签到,获得积分10
3分钟前
genius_yue完成签到,获得积分10
3分钟前
3分钟前
潇洒的月光完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5376400
求助须知:如何正确求助?哪些是违规求助? 4501498
关于积分的说明 14013106
捐赠科研通 4409293
什么是DOI,文献DOI怎么找? 2422135
邀请新用户注册赠送积分活动 1414947
关于科研通互助平台的介绍 1391827