Deep Learning‐Based Crack Damage Detection Using Convolutional Neural Networks

卷积神经网络 索贝尔算子 计算机科学 深度学习 稳健性(进化) 像素 计算机视觉 人工智能 Canny边缘检测器 影子(心理学) 模式识别(心理学) 适应性 图像(数学) 边缘检测 图像处理 化学 心理治疗师 基因 生物 生物化学 生态学 心理学
作者
Young‐Jin Cha,Wooram Choi,Oral Büyüköztürk
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:32 (5): 361-378 被引量:2898
标识
DOI:10.1111/mice.12263
摘要

Abstract A number of image processing techniques (IPTs) have been implemented for detecting civil infrastructure defects to partially replace human‐conducted onsite inspections. These IPTs are primarily used to manipulate images to extract defect features, such as cracks in concrete and steel surfaces. However, the extensively varying real‐world situations (e.g., lighting and shadow changes) can lead to challenges to the wide adoption of IPTs. To overcome these challenges, this article proposes a vision‐based method using a deep architecture of convolutional neural networks (CNNs) for detecting concrete cracks without calculating the defect features. As CNNs are capable of learning image features automatically, the proposed method works without the conjugation of IPTs for extracting features. The designed CNN is trained on 40 K images of 256 × 256 pixel resolutions and, consequently, records with about 98% accuracy. The trained CNN is combined with a sliding window technique to scan any image size larger than 256 × 256 pixel resolutions. The robustness and adaptability of the proposed approach are tested on 55 images of 5,888 × 3,584 pixel resolutions taken from a different structure which is not used for training and validation processes under various conditions (e.g., strong light spot, shadows, and very thin cracks). Comparative studies are conducted to examine the performance of the proposed CNN using traditional Canny and Sobel edge detection methods. The results show that the proposed method shows quite better performances and can indeed find concrete cracks in realistic situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huanir99完成签到,获得积分10
刚刚
小青椒应助我就是柠檬精采纳,获得30
1秒前
zcx完成签到,获得积分10
1秒前
2秒前
2秒前
Rinamamiya完成签到,获得积分10
2秒前
坚强的橘子完成签到,获得积分10
3秒前
香蕉觅云应助锂氧采纳,获得10
3秒前
积极的凝云完成签到,获得积分10
3秒前
马里奥发布了新的文献求助10
4秒前
周杰完成签到,获得积分10
4秒前
4秒前
传奇3应助秋白采纳,获得10
5秒前
6秒前
6秒前
dw发布了新的文献求助10
6秒前
田田完成签到 ,获得积分10
7秒前
黄昕芮完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
10秒前
youxianlang完成签到,获得积分10
11秒前
番茄完成签到,获得积分10
11秒前
Zyc发布了新的文献求助10
12秒前
LinHan发布了新的文献求助10
13秒前
gui发布了新的文献求助10
13秒前
14秒前
14秒前
迷人夏槐发布了新的文献求助10
14秒前
小星星668完成签到,获得积分10
15秒前
16秒前
马鑫燚发布了新的文献求助10
16秒前
砼砼完成签到,获得积分10
16秒前
17秒前
汉堡包应助seven采纳,获得10
17秒前
Millie完成签到 ,获得积分10
18秒前
18秒前
香辣鸡腿堡完成签到,获得积分20
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461185
求助须知:如何正确求助?哪些是违规求助? 4566221
关于积分的说明 14304031
捐赠科研通 4491948
什么是DOI,文献DOI怎么找? 2460543
邀请新用户注册赠送积分活动 1449837
关于科研通互助平台的介绍 1425582