Multi-modal classification of Alzheimer's disease using nonlinear graph fusion

人工智能 模式识别(心理学) 计算机科学 模态(人机交互) 图形 神经影像学 范畴变量 机器学习 数学 医学 理论计算机科学 精神科
作者
Tong Tong,Katherine R. Gray,Qinquan Gao,Liang Chen,Daniel Rueckert
出处
期刊:Pattern Recognition [Elsevier]
卷期号:63: 171-181 被引量:217
标识
DOI:10.1016/j.patcog.2016.10.009
摘要

Abstract Accurate diagnosis of Alzheimer's disease (AD) and its prodromal stage mild cognitive impairment (MCI) is of great interest to patients and clinicians. Recent studies have demonstrated that multiple neuroimaging and biological measures contain complementary information for diagnosis and prognosis. Classification methods are needed to combine these multiple biomarkers to provide an accurate diagnosis. State-of-the-art approaches calculate a mixed kernel or a similarity matrix by linearly combining kernels or similarities from multiple modalities. However, the complementary information from multi-modal data are not necessarily linearly related. In addition, this linear combination is also sensitive to the weights assigned to each modality. In this paper, we present a multi-modality classification framework to efficiently exploit the complementarity in the multi-modal data. First, pairwise similarity is calculated for each modality individually using the features including regional MRI volumes, voxel-based FDG-PET signal intensities, CSF biomarker measures, and categorical genetic information. Similarities from multiple modalities are then combined in a nonlinear graph fusion process, which generates a unified graph for final classification. Based on the unified graphs, we achieved classification area under curve (AUC) of receiver-operator characteristic of 98.1% between AD subjects and normal controls (NC), 82.4% between MCI subjects and NC and 77.9% in a three-way classification, which are significantly better than those using single-modality biomarkers and those based on state-of-the-art linear combination approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
精明的橘子完成签到,获得积分10
刚刚
zsping完成签到,获得积分10
刚刚
慕青应助路易啊采纳,获得10
1秒前
violinsj完成签到,获得积分0
2秒前
4秒前
www完成签到,获得积分10
5秒前
5秒前
领导范儿应助早日毕业采纳,获得10
5秒前
5秒前
5秒前
6秒前
机灵一兰完成签到 ,获得积分10
6秒前
NexusExplorer应助陈陈陈采纳,获得10
7秒前
9秒前
小殷发布了新的文献求助10
9秒前
ccc完成签到,获得积分10
10秒前
云出发布了新的文献求助10
10秒前
crazyrock发布了新的文献求助10
11秒前
www发布了新的文献求助30
12秒前
会游泳的猪完成签到,获得积分10
12秒前
12秒前
隐形以蓝完成签到,获得积分10
13秒前
13秒前
淮安彦祖完成签到 ,获得积分20
16秒前
16秒前
16秒前
Jiang发布了新的文献求助10
16秒前
123完成签到,获得积分10
18秒前
想瘦的海豹完成签到,获得积分10
19秒前
糟糕的铁锤应助chuo采纳,获得100
20秒前
耿耿完成签到,获得积分10
20秒前
wyw完成签到,获得积分10
20秒前
魏为维发布了新的文献求助10
20秒前
科研通AI2S应助诚心的以亦采纳,获得30
21秒前
刘金玲发布了新的文献求助10
21秒前
李健的小迷弟应助匆匆采纳,获得10
23秒前
23秒前
无花果应助fwy采纳,获得10
23秒前
BONBON完成签到,获得积分20
23秒前
hbc发布了新的文献求助10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540600
求助须知:如何正确求助?哪些是违规求助? 3117879
关于积分的说明 9332947
捐赠科研通 2815724
什么是DOI,文献DOI怎么找? 1547709
邀请新用户注册赠送积分活动 721130
科研通“疑难数据库(出版商)”最低求助积分说明 712481