单调函数
数学
劈形算符
操作员(生物学)
应用数学
核(代数)
纯数学
数学分析
物理
生物化学
量子力学
转录因子
基因
抑制因子
化学
欧米茄
作者
Thabet Abdeljawad,Dumitru Băleanu
标识
DOI:10.1016/j.chaos.2017.04.006
摘要
Abstract Discrete fractional calculus is one of the new trends in fractional calculus both from theoretical and applied viewpoints. In this article we prove that if the nabla fractional difference operator with discrete Mittag-Leffler kernel ( a − 1 A B R ∇ α y ) ( t ) of order 0 α 1 2 and starting at a − 1 is positive, then y ( t ) is α 2 − increasing. That is y ( t + 1 ) ≥ α 2 y ( t ) for all t ∈ N a = { a , a + 1 , … } . Conversely, if y ( t ) is increasing and y ( a ) ≥ 0, then ( a − 1 A B R ∇ α y ) ( t ) ≥ 0 . The monotonicity properties of the Caputo and right fractional differences are concluded as well. As an application, we prove a fractional difference version of mean-value theorem. Finally, some comparisons to the classical discrete fractional case and to fractional difference operators with discrete exponential kernel are made.
科研通智能强力驱动
Strongly Powered by AbleSci AI