Automated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networks

卷积神经网络 前列腺癌 人工智能 计算机科学 人工神经网络 前列腺 癌症 参数统计 模式识别(心理学) 医学 放射科 数学 内科学 统计
作者
Minh Hung Le,Jingyu Chen,Liang Wang,Zhiwei Wang,Wenyu Liu,Kwang‐Ting Cheng,Xin Yang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:62 (16): 6497-6514 被引量:140
标识
DOI:10.1088/1361-6560/aa7731
摘要

Automated methods for prostate cancer (PCa) diagnosis in multi-parametric magnetic resonance imaging (MP-MRIs) are critical for alleviating requirements for interpretation of radiographs while helping to improve diagnostic accuracy (Artan et al 2010 IEEE Trans. Image Process. 19 2444-55, Litjens et al 2014 IEEE Trans. Med. Imaging 33 1083-92, Liu et al 2013 SPIE Medical Imaging (International Society for Optics and Photonics) p 86701G, Moradi et al 2012 J. Magn. Reson. Imaging 35 1403-13, Niaf et al 2014 IEEE Trans. Image Process. 23 979-91, Niaf et al 2012 Phys. Med. Biol. 57 3833, Peng et al 2013a SPIE Medical Imaging (International Society for Optics and Photonics) p 86701H, Peng et al 2013b Radiology 267 787-96, Wang et al 2014 BioMed. Res. Int. 2014). This paper presents an automated method based on multimodal convolutional neural networks (CNNs) for two PCa diagnostic tasks: (1) distinguishing between cancerous and noncancerous tissues and (2) distinguishing between clinically significant (CS) and indolent PCa. Specifically, our multimodal CNNs effectively fuse apparent diffusion coefficients (ADCs) and T2-weighted MP-MRI images (T2WIs). To effectively fuse ADCs and T2WIs we design a new similarity loss function to enforce consistent features being extracted from both ADCs and T2WIs. The similarity loss is combined with the conventional classification loss functions and integrated into the back-propagation procedure of CNN training. The similarity loss enables better fusion results than existing methods as the feature learning processes of both modalities are mutually guided, jointly facilitating CNN to 'see' the true visual patterns of PCa. The classification results of multimodal CNNs are further combined with the results based on handcrafted features using a support vector machine classifier. To achieve a satisfactory accuracy for clinical use, we comprehensively investigate three critical factors which could greatly affect the performance of our multimodal CNNs but have not been carefully studied previously. (1) Given limited training data, how can these be augmented in sufficient numbers and variety for fine-tuning deep CNN networks for PCa diagnosis? (2) How can multimodal MP-MRI information be effectively combined in CNNs? (3) What is the impact of different CNN architectures on the accuracy of PCa diagnosis? Experimental results on extensive clinical data from 364 patients with a total of 463 PCa lesions and 450 identified noncancerous image patches demonstrate that our system can achieve a sensitivity of 89.85% and a specificity of 95.83% for distinguishing cancer from noncancerous tissues and a sensitivity of 100% and a specificity of 76.92% for distinguishing indolent PCa from CS PCa. This result is significantly superior to the state-of-the-art method relying on handcrafted features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助飞羽采纳,获得10
3秒前
碳水大王发布了新的文献求助10
4秒前
5秒前
冰冰完成签到,获得积分20
7秒前
墨水完成签到 ,获得积分10
7秒前
Akim应助King16采纳,获得10
8秒前
冰冰发布了新的文献求助10
10秒前
小肖的KYT应助Anquan采纳,获得10
10秒前
11秒前
15秒前
我鬼混回来了完成签到 ,获得积分10
15秒前
杳鸢应助杨帆采纳,获得10
17秒前
17秒前
xy9147发布了新的文献求助30
18秒前
King16发布了新的文献求助10
20秒前
赘婿应助多来米采纳,获得10
21秒前
wq完成签到,获得积分10
21秒前
25秒前
29秒前
iNk应助冰冰采纳,获得10
31秒前
你好好好发布了新的文献求助10
32秒前
多来米发布了新的文献求助10
33秒前
33秒前
King16完成签到,获得积分10
34秒前
35秒前
飞羽发布了新的文献求助10
38秒前
科目三应助苗条曲奇采纳,获得10
39秒前
39秒前
40秒前
闪闪的梦柏完成签到 ,获得积分10
43秒前
hongt05完成签到 ,获得积分10
43秒前
wjj015410发布了新的文献求助10
44秒前
多来米完成签到,获得积分10
46秒前
隐形曼青应助羊羊吃芋圆采纳,获得10
46秒前
47秒前
wmfang完成签到,获得积分10
50秒前
51秒前
威武鹤轩完成签到 ,获得积分10
51秒前
53秒前
梁静宇完成签到 ,获得积分10
53秒前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3378889
求助须知:如何正确求助?哪些是违规求助? 2994306
关于积分的说明 8758995
捐赠科研通 2678944
什么是DOI,文献DOI怎么找? 1467391
科研通“疑难数据库(出版商)”最低求助积分说明 678659
邀请新用户注册赠送积分活动 670283