Automated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networks

卷积神经网络 前列腺癌 人工智能 计算机科学 人工神经网络 前列腺 癌症 参数统计 模式识别(心理学) 医学 放射科 数学 内科学 统计
作者
Minh Hung Le,Jingyu Chen,Liang Wang,Zhiwei Wang,Wenyu Liu,Kwang‐Ting Cheng,Xin Yang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:62 (16): 6497-6514 被引量:140
标识
DOI:10.1088/1361-6560/aa7731
摘要

Automated methods for prostate cancer (PCa) diagnosis in multi-parametric magnetic resonance imaging (MP-MRIs) are critical for alleviating requirements for interpretation of radiographs while helping to improve diagnostic accuracy (Artan et al 2010 IEEE Trans. Image Process. 19 2444-55, Litjens et al 2014 IEEE Trans. Med. Imaging 33 1083-92, Liu et al 2013 SPIE Medical Imaging (International Society for Optics and Photonics) p 86701G, Moradi et al 2012 J. Magn. Reson. Imaging 35 1403-13, Niaf et al 2014 IEEE Trans. Image Process. 23 979-91, Niaf et al 2012 Phys. Med. Biol. 57 3833, Peng et al 2013a SPIE Medical Imaging (International Society for Optics and Photonics) p 86701H, Peng et al 2013b Radiology 267 787-96, Wang et al 2014 BioMed. Res. Int. 2014). This paper presents an automated method based on multimodal convolutional neural networks (CNNs) for two PCa diagnostic tasks: (1) distinguishing between cancerous and noncancerous tissues and (2) distinguishing between clinically significant (CS) and indolent PCa. Specifically, our multimodal CNNs effectively fuse apparent diffusion coefficients (ADCs) and T2-weighted MP-MRI images (T2WIs). To effectively fuse ADCs and T2WIs we design a new similarity loss function to enforce consistent features being extracted from both ADCs and T2WIs. The similarity loss is combined with the conventional classification loss functions and integrated into the back-propagation procedure of CNN training. The similarity loss enables better fusion results than existing methods as the feature learning processes of both modalities are mutually guided, jointly facilitating CNN to 'see' the true visual patterns of PCa. The classification results of multimodal CNNs are further combined with the results based on handcrafted features using a support vector machine classifier. To achieve a satisfactory accuracy for clinical use, we comprehensively investigate three critical factors which could greatly affect the performance of our multimodal CNNs but have not been carefully studied previously. (1) Given limited training data, how can these be augmented in sufficient numbers and variety for fine-tuning deep CNN networks for PCa diagnosis? (2) How can multimodal MP-MRI information be effectively combined in CNNs? (3) What is the impact of different CNN architectures on the accuracy of PCa diagnosis? Experimental results on extensive clinical data from 364 patients with a total of 463 PCa lesions and 450 identified noncancerous image patches demonstrate that our system can achieve a sensitivity of 89.85% and a specificity of 95.83% for distinguishing cancer from noncancerous tissues and a sensitivity of 100% and a specificity of 76.92% for distinguishing indolent PCa from CS PCa. This result is significantly superior to the state-of-the-art method relying on handcrafted features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
核桃完成签到,获得积分0
刚刚
M先生完成签到,获得积分10
刚刚
万元帅完成签到 ,获得积分10
1秒前
ding应助自然的靖荷采纳,获得30
1秒前
1秒前
2秒前
2秒前
JamesPei应助落后紫夏采纳,获得10
3秒前
3秒前
4秒前
llullalla发布了新的文献求助10
5秒前
深情安青应助嗡嗡大王采纳,获得10
5秒前
Liiiii完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
天真的铭完成签到,获得积分10
7秒前
科研通AI2S应助大可采纳,获得10
7秒前
suiyi发布了新的文献求助10
7秒前
Hello应助酷酷笑容采纳,获得10
8秒前
谌倪完成签到 ,获得积分10
8秒前
直率的冰海完成签到,获得积分10
8秒前
Maria完成签到,获得积分10
8秒前
李双艳发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
9秒前
桐桐应助熬夜的桃子采纳,获得10
9秒前
Littlerain~发布了新的文献求助10
9秒前
jiayoujijin发布了新的文献求助10
10秒前
10秒前
赵冉完成签到 ,获得积分10
10秒前
ling2001完成签到,获得积分10
11秒前
11秒前
11秒前
Lucas应助保护萝卜采纳,获得10
11秒前
xiaoyuun发布了新的文献求助10
12秒前
assure完成签到,获得积分10
12秒前
大海完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953707
求助须知:如何正确求助?哪些是违规求助? 3499536
关于积分的说明 11096135
捐赠科研通 3230090
什么是DOI,文献DOI怎么找? 1785865
邀请新用户注册赠送积分活动 869656
科研通“疑难数据库(出版商)”最低求助积分说明 801479