Big Data in the construction industry: A review of present status, opportunities, and future trends

大数据 数据科学 背景(考古学) 工程类 计算机科学 分析 数据挖掘 地理 考古
作者
Muhammad Bilal,Lukumon O. Oyedele,Junaid Qadir,Kamran Munir,Saheed Ajayi,Olúgbénga O. Akinadé,Hakeem A. Owolabi,Hafiz Alaka,Maruf Pasha
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:30 (3): 500-521 被引量:543
标识
DOI:10.1016/j.aei.2016.07.001
摘要

The ability to process large amounts of data and to extract useful insights from data has revolutionised society. This phenomenon—dubbed as Big Data—has applications for a wide assortment of industries, including the construction industry. The construction industry already deals with large volumes of heterogeneous data; which is expected to increase exponentially as technologies such as sensor networks and the Internet of Things are commoditised. In this paper, we present a detailed survey of the literature, investigating the application of Big Data techniques in the construction industry. We reviewed related works published in the databases of American Association of Civil Engineers (ASCE), Institute of Electrical and Electronics Engineers (IEEE), Association of Computing Machinery (ACM), and Elsevier Science Direct Digital Library. While the application of data analytics in the construction industry is not new, the adoption of Big Data technologies in this industry remains at a nascent stage and lags the broad uptake of these technologies in other fields. To the best of our knowledge, there is currently no comprehensive survey of Big Data techniques in the context of the construction industry. This paper fills the void and presents a wide-ranging interdisciplinary review of literature of fields such as statistics, data mining and warehousing, machine learning, and Big Data Analytics in the context of the construction industry. We discuss the current state of adoption of Big Data in the construction industry and discuss the future potential of such technologies across the multiple domain-specific sub-areas of the construction industry. We also propose open issues and directions for future work along with potential pitfalls associated with Big Data adoption in the industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zoe完成签到,获得积分10
2秒前
3秒前
Tik发布了新的文献求助10
4秒前
5秒前
Zxy完成签到 ,获得积分10
5秒前
眰恦完成签到,获得积分10
5秒前
今后应助犹豫的忆梅采纳,获得10
6秒前
眼睛大的寄容完成签到 ,获得积分10
10秒前
10秒前
12秒前
12秒前
14秒前
14秒前
14秒前
123完成签到,获得积分10
15秒前
Vincy完成签到 ,获得积分10
16秒前
16秒前
17秒前
占听兰发布了新的文献求助10
17秒前
18秒前
song发布了新的文献求助10
18秒前
19秒前
情怀应助白洛采纳,获得10
20秒前
Li发布了新的文献求助10
20秒前
21秒前
禹无极发布了新的文献求助10
22秒前
23秒前
小诗姐姐完成签到,获得积分10
23秒前
爆米花应助贪玩的书包采纳,获得10
25秒前
张小北发布了新的文献求助10
25秒前
25秒前
鲲之小完成签到 ,获得积分10
26秒前
传奇3应助康康采纳,获得10
27秒前
华仔应助Gen_cexon采纳,获得10
27秒前
ghl完成签到,获得积分10
27秒前
28秒前
28秒前
董胖子发布了新的文献求助10
28秒前
30秒前
YY发布了新的文献求助30
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143769
求助须知:如何正确求助?哪些是违规求助? 2795306
关于积分的说明 7814169
捐赠科研通 2451255
什么是DOI,文献DOI怎么找? 1304400
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601413