A three-dimensional finite element model was established to investigate the water–air online quenching process of 3Cr2Mo steel with 130-mm thickness. The temperature, metallographic structure and stress–strain fields of the steel were calculated under single-pass continuous quenching, multi-pass continuous quenching and multi-pass interrupted quenching (MPIQ) processes. The results show that the three quenching processes can avoid the pearlite appearance, and MPIQ process could be more effective to decrease the brittleness of steel. Besides, MPIQ process is able to reduce stress–strain, minimise deformation and avoid cracking problem. The hardness and the metallographic structure were tested after MPIQ process and tempering. After tempering, the metallographic structures were all tempered sorbite, and the hardness difference of the whole steel was less than 3HRC with no cracks. It can draw the conclusion that the MPIQ process is a suitable quenching process for 3Cr2Mo steel.